Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.
- MeSH
- fylogeneze MeSH
- hlodavci MeSH
- hmyzožravci MeSH
- Parechovirus klasifikace genetika izolace a purifikace MeSH
- pikornavirové infekce epidemiologie veterinární MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- roční období MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The way in which European genetic variants of Anaplasma phagocytophilum circulate in their natural foci and which variants cause disease in humans or livestock remains thus far unclear. Red deer and roe deer are suggested to be reservoirs for some European A. phagocytophilum strains, and Ixodes ricinus is their principal vector. Based on groEL gene sequences, five A. phagocytophilum ecotypes have been identified. Ecotype I is associated with the broadest host range, including strains that cause disease in domestic animals and humans. Ecotype II is associated with roe deer and does not include zoonotic strains. In the present study, questing I. ricinus were collected in urban, pasture, and natural habitats in the Czech Republic, Germany, and Slovakia. A fragment of the msp2 gene of A. phagocytophilum was amplified by real-time PCR in DNA isolated from ticks. Positive samples were further analyzed by nested PCRs targeting fragments of the 16S rRNA and groEL genes, followed by sequencing. Samples were stratified according to the presence/absence of roe deer at the sampling sites. Geographic origin, habitat, and tick stage were also considered. The probability that A. phagocytophilum is a particular ecotype was estimated by a generalized linear model. Anaplasma phagocytophilum was identified by genetic typing in 274 I. ricinus ticks. The majority belonged to ecotype I (63.9%), 28.5% were ecotype II, and both ecotypes were identified in 7.7% of ticks. Ecotype II was more frequently identified in ticks originating from a site with presence of roe deer, whereas ecotype I was more frequent in adult ticks than in nymphs. Models taking into account the country-specific, site-specific, and habitat-specific aspects did not improve the goodness of the fit. Thus, roe deer presence in a certain site and the tick developmental stage are suggested to be the two factors consistently influencing the occurrence of a particular A. phagocytophilum ecotype in a positive I. ricinus tick.
- MeSH
- Anaplasma phagocytophilum genetika izolace a purifikace MeSH
- ekosystém MeSH
- ekotyp MeSH
- klíště genetika mikrobiologie MeSH
- lidé MeSH
- RNA ribozomální 16S genetika MeSH
- vysoká zvěř mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Anaplasma phagocytophilum is currently regarded as a single species. However, molecular studies indicate that it can be subdivided into ecotypes, each with distinct but overlapping transmission cycle. Here, we evaluate the interactions between and within clusters of haplotypes of the bacterium isolated from vertebrates and ticks, using phylogenetic and network-based methods. METHODS: The presence of A. phagocytophilum DNA was determined in ticks and vertebrate tissue samples. A fragment of the groEl gene was amplified and sequenced from qPCR-positive lysates. Additional groEl sequences from ticks and vertebrate reservoirs were obtained from GenBank and through literature searches, resulting in a dataset consisting of 1623 A. phagocytophilum field isolates. Phylogenetic analyses were used to infer clusters of haplotypes and to assess phylogenetic clustering of A. phagocytophilum in vertebrates or ticks. Network-based methods were used to resolve host-vector interactions and their relative importance in the segregating communities of haplotypes. RESULTS: Phylogenetic analyses resulted in 199 haplotypes within eight network-derived clusters, which were allocated to four ecotypes. The interactions of haplotypes between ticks, vertebrates and geographical origin, were visualized and quantified from networks. A high number of haplotypes were recorded in the tick Ixodes ricinus. Communities of A. phagocytophilum recorded from Korea, Japan, Far Eastern Russia, as well as those associated with rodents had no links with the larger set of isolates associated with I. ricinus, suggesting different evolutionary pressures. Rodents appeared to have a range of haplotypes associated with either Ixodes trianguliceps or Ixodes persulcatus and Ixodes pavlovskyi. Haplotypes found in rodents in Russia had low similarities with those recorded in rodents in other regions and shaped separate communities. CONCLUSIONS: The groEl gene fragment of A. phagocytophilum provides information about spatial segregation and associations of haplotypes to particular vector-host interactions. Further research is needed to understand the circulation of this bacterium in the gap between Europe and Asia before the overview of the speciation features of this bacterium is complete. Environmental traits may also play a role in the evolution of A. phagocytophilum in ecotypes through yet unknown relationships.
- MeSH
- Anaplasma phagocytophilum genetika izolace a purifikace MeSH
- chaperon hsp60 genetika MeSH
- ekotyp MeSH
- fylogeneze * MeSH
- haplotypy MeSH
- klíště mikrobiologie MeSH
- molekulární evoluce * MeSH
- obratlovci mikrobiologie MeSH
- společenstvo * MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
The incidence of tick-borne diseases caused by Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Rickettsia spp. has been rising in Europe in recent decades. Early pre-assessment of acarological hazard still represents a complex challenge. The aim of this study was to model Ixodes ricinus questing nymph density and its infection rate with B. burgdorferi s.l., A. phagocytophilum and Rickettsia spp. in five European countries (Italy, Germany, Czech Republic, Slovakia, Hungary) in various land cover types differing in use and anthropisation (agricultural, urban and natural) with climatic and environmental factors (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Land Surface Temperature (LST) and precipitation). We show that the relative abundance of questing nymphs was significantly associated with climatic conditions, such as higher values of NDVI recorded in the sampling period, while no differences were observed among land use categories. However, the density of infected nymphs (DIN) also depended on the pathogen considered and land use. These results contribute to a better understanding of the variation in acarological hazard for Ixodes ricinus transmitted pathogens in Central Europe and provide the basis for more focused ecological studies aimed at assessing the effect of land use in different sites on tick-host pathogens interaction.
- MeSH
- Anaplasma phagocytophilum růst a vývoj MeSH
- Borrelia burgdorferi růst a vývoj MeSH
- časoprostorová analýza * MeSH
- gramnegativní bakterie růst a vývoj MeSH
- klíště mikrobiologie MeSH
- nymfa MeSH
- podnebí * MeSH
- Rickettsia růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
By amplification and sequencing of 18S rRNA gene fragments, Hepatozoon spp. DNA was detected in 0.08 % (4/5057) and 0.04 % (1/2473) of questing Ixodes ricinus ticks from Slovakia and Czech Republic, respectively. Hepatozoon spp. DNA was also detected in spleen and/or lungs of 4.45 % (27/606) of rodents from Slovakia. Prevalence of infection was significantly higher in Myodes glareolus (11.45 %) than in Apodemus spp. (0.28 %) (P < 0.001). Sequencing of 18S rRNA Hepatozoon spp. gene amplicons from I. ricinus showed 100 % identity with Hepatozoon canis isolates from red foxes or dogs in Europe. Phylogenetic analysis showed that at least two H. canis 18S rRNA genotypes exist in Slovakia of which one was identified also in the Czech Republic. The finding of H. canis in questing I. ricinus suggests the geographical spread of the parasite and a potential role of other ticks as its vectors in areas where Rhipicephalus sanguineus is not endemic. Sequencing of 18S rRNA gene amplicons from M. glareolus revealed the presence of two closely related genetic variants, Hepatozoon sp. SK1 and Hepatozoon sp. SK2, showing 99-100 % identity with isolates from M. glareolus from other European countries. Phylogenetic analysis demonstrates that 18S rRNA variants SK1 and SK2 correspond to previously described genotypes UR1 and UR2 of H. erhardovae, respectively. The isolate from Apodemus flavicollis (Hepatozoon sp. SK3b) was 99 % identical with isolates from reptiles in Africa and Asia. Further studies are necessary to identify the taxonomic status of Hepatozoon spp. parasitizing rodents in Europe and the host-parasite interactions in natural foci.
- MeSH
- arachnida jako vektory parazitologie MeSH
- Arvicolinae parazitologie MeSH
- Eucoccidiida klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- klíště parazitologie MeSH
- kokcidióza epidemiologie parazitologie MeSH
- lidé MeSH
- Murinae parazitologie MeSH
- ribozomální DNA chemie genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Slovenská republika epidemiologie MeSH
BACKGROUND: Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated. RESULTS: Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum. CONCLUSION: Our findings suggest that I. ricinus and rodents play important roles in the epidemiology of zoonotic Babesia spp. in south-western Slovakia. Associations with vertebrate hosts and the pathogenicity of Babesia spp. infecting H. concinna ticks need to be further explored.
- MeSH
- Babesia izolace a purifikace MeSH
- divoká zvířata mikrobiologie MeSH
- hlodavci mikrobiologie parazitologie MeSH
- klíšťata mikrobiologie MeSH
- klíště mikrobiologie MeSH
- prevalence MeSH
- ptáci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH
BACKGROUND: Candidatus Neoehrlichia mikurensis (CNM) is an emerging tick-borne pathogen causing severe disease in immunocompromised patients. In Europe, Ixodes ricinus is the primary vector and rodents act as reservoir hosts. New data on the prevalence of CNM in ticks and rodents contribute to the knowledge on the distribution of endemic areas and circulation of the bacterium in natural foci. METHODS: Questing ticks were collected and rodents were trapped in urban/suburban and natural habitats in South-Western Slovakia from 2011 to 2014. DNA from questing and rodent-attached ticks and rodent tissues were screened for CNM by real-time PCR. Rodent spleen samples positive for CNM were characterised at the groEL gene locus. Spatial and temporal differences in CNM prevalence in ticks and rodents and co-infections of ticks with CNM and Anaplasma phagocytophilum were analysed. RESULTS: The presence of CNM was confirmed in questing and rodent-attached I. ricinus ticks and in rodents. Total prevalence in both ticks and rodents was significantly higher in the natural habitat (2.3% and 10.1%, respectively) than in the urban/suburban habitat (1.0% and 3.3%, respectively). No seasonal pattern in CNM prevalence in ticks was observed, but prevalence in rodents was higher in autumn than in spring. CNM was detected in Apodemus flavicollis, Myodes glareolus, Microtus arvalis and Micromys minutus, with the highest prevalence in M. arvalis (30%). By screening CNM dissemination in rodent tissues, infection was detected in lungs of all specimens with positive spleens and in blood, kidney, liver and skin of part of those individuals. Infection with CNM was detected in 1.3% of rodent attached I. ricinus ticks. Sequences of a fragment of the groEL gene from CNM-positive rodents showed a high degree of identity with sequences of the gene amplified from ticks and infected human blood from Europe. Only 0.1% of CNM-positive questing ticks carried A. phagocytophilum. Ticks infected with CNM prevailed in the natural habitat (67.2%), whereas ticks infected with A. phagocytophilum prevailed in the urban/suburban habitat (75.0%). CONCLUSION: The study confirmed the circulation of CNM between I. ricinus ticks and rodents in South-Western Slovakia, and indicates a potential risk of contracting human infections.
- MeSH
- Anaplasma phagocytophilum genetika izolace a purifikace MeSH
- Anaplasmataceae genetika izolace a purifikace MeSH
- arachnida jako vektory mikrobiologie MeSH
- ehrlichióza epidemiologie mikrobiologie MeSH
- ekosystém MeSH
- hlodavci MeSH
- infekce bakteriemi čeledi Anaplasmataceae epidemiologie mikrobiologie MeSH
- infestace klíšťaty epidemiologie mikrobiologie MeSH
- klíště mikrobiologie MeSH
- koinfekce MeSH
- lidé MeSH
- riziko MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika epidemiologie MeSH
Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the 'pathobiome'; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks.
- MeSH
- klíšťata mikrobiologie virologie MeSH
- lidé MeSH
- mikrobiota * MeSH
- nemoci přenášené klíšťaty epidemiologie mikrobiologie přenos virologie MeSH
- zoonózy epidemiologie mikrobiologie přenos virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found.
- MeSH
- Anaplasma phagocytophilum patogenita MeSH
- buněčné linie MeSH
- Flavivirus patogenita MeSH
- fylogeneze MeSH
- jaderné proteiny genetika metabolismus MeSH
- klíště genetika parazitologie virologie MeSH
- konzervovaná sekvence MeSH
- křečci praví MeSH
- molekulární sekvence - údaje MeSH
- RNA interference * MeSH
- sekvence aminokyselin MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Ixodes ricinus is the principal vector of Anaplasma phagocytophilum, the ethiological agent of granulocytic anaplasmosis in Europe. Anaplasmosis is an emerging zoonotic disease with a natural enzootic cycle. The reservoir competence of rodents is unclear. Monitoring of A. phagocytophilum prevalence in I. ricinus and rodents in various habitat types of Slovakia may contribute to the knowledge about the epidemiology of anaplasmosis in Central Europe. METHODS: Over 4400 questing ixodid ticks, 1000 rodent-attached ticks and tissue samples of 606 rodents were screened for A. phagocytophilum DNA by real-time PCR targeting the msp2 gene. Ticks and rodents were captured along six transects in an urban/suburban and natural habitat in south-western Slovakia during 2011-2014. Estimates of wildlife (roe deer, red deer, fallow deer, mouflon, wild boar) densities in the study area were taken from hunter's yearly reports. Spatial and temporal differences in A. phagocytophilum prevalence in questing I. ricinus and relationships with relative abundance of ticks and wildlife were analysed. RESULTS: Overall prevalence of A. phagocytophilum in questing I. ricinus was significantly higher in the urban/suburban habitat (7.2%; 95% CI: 6.1-8.3%) compared to the natural habitat (3.1%; 95% CI: 2.5-3.9%) (χ(2) = 37.451; P < 0.001). Significant local differences in prevalence of infected questing ticks were found among transects within each habitat as well as among years and between seasons. The trapped rodents belonged to six species. Apodemus flavicollis and Myodes glareolus prevailed in both habitats, Microtus arvalis was present only in the natural habitat. I. ricinus comprised 96.3% of the rodent-attached ticks, the rest were Haemaphysalis concinna, Ixodes trianguliceps and Dermacentor reticulatus. Only 0.5% of rodent skin and 0.6% of rodent-attached ticks (only I. ricinus) were infected with A. phagocytophilum. Prevalence of A. phagocytophilum in questing I. ricinus did not correlate significantly with relative abundance of ticks or with abundance of wildlife in the area. CONCLUSION: The study confirms that urban I. ricinus populations are infected with A. phagocytophilum at a higher rate than in a natural habitat of south-western Slovakia and suggests that rodents are not the main reservoirs of the bacterium in the investigated area.
- MeSH
- Anaplasma phagocytophilum izolace a purifikace MeSH
- časové faktory MeSH
- ehrlichióza epidemiologie přenos MeSH
- ekosystém MeSH
- hlodavci MeSH
- klíště mikrobiologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- nemoci hlodavců epidemiologie mikrobiologie přenos MeSH
- nymfa mikrobiologie MeSH
- rozšíření zvířat MeSH
- velkoměsta MeSH
- zdroje nemoci * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH
- velkoměsta MeSH