We investigated the role of the interaction between hypertension and the renin-angiotensin system in the pathophysiology of myocardial ischemia/reperfusion injury. We hypothesized that in the early phase of angiotensin II (ANG II)-dependent hypertension with developed left ventricular hypertrophy, cardioprotective mechanism(s) are fully activated. The experiments were performed in transgenic rats with inducible hypertension, noninduced rats served as controls. The early phase of ANG II-dependent hypertension was induced by five-days (5 days) dietary indole-3-carbinol administration. Cardiac hypertrophy, ANG II and ANG 1-7 levels, protein expression of their receptors and enzymes were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury, and infarct size and ventricular arrhythmias were assessed. Induced rats developed marked cardiac hypertrophy accompanied by elevated ANG levels. Ischemia/reperfusion mortality was significantly higher in induced than noninduced rats (52.1 and 25%, respectively). The blockade of AT1 receptors with losartan significantly increased survival rate in both groups. Myocardial infarct size was significantly reduced after 5 days induction (by 11%), without changes after losartan treatment. In conclusion, we confirmed improved cardiac tolerance to ischemia/reperfusion injury in hypertensive cardiohypertrophied rats and found that activation of AT1 receptors by locally produced ANG II in the heart was not the mechanism underlying infarct size reduction.
- Publikační typ
- časopisecké články MeSH
Suboptimal conditions during prenatal and early postnatal development can increase risk of hypertension later in life. We studied consequences of a changed perinatal environment by initiating the cross-fostering of homozygous Ren-2 transgenic rat (TGR) offspring to normotensive, transgene-negative control mothers, and vice versa. We hypothesized that cross-fostering to a normotensive female can attenuate the development of malignant hypertension in TGR offspring (TGRx) and change their salt-sensitive response. Blood pressure (BP) was monitored by the telemetry system under normal salt intake, and BP responses to increased salt intake in the phase of established hypertension. Under normal salt conditions, BP was not markedly different in cross-fostered animals compared with controls. However, BP responses to 2% salt intake led to a stronger BP response in TGRx during the active phase when compared with the control TGR group. The TGRx also exhibited increased albuminuria, lower sodium excretion, and creatinine clearance under higher salt intake compared with control salt intake. Higher salt intake resulted in a significant increase of aldosterone concentrations only in the TGRx group; moreover, TGRx rats exhibited more pronounced renal injury compared with controls. In conclusion, our data indicate that cross-fostering in TGR not only did not attenuate the development of hypertension but, on the contrary, led to the deterioration of BP regulation, particularly due to exaggerated salt sensitivity and sodium retention in TGRx. Results underline the important role of the mother during lactation in postnatal development of the offspring, since these changes reflected different ion content in milk of a particular strain of rats.
- MeSH
- aldosteron krev MeSH
- hypertenze genetika patofyziologie MeSH
- krevní tlak genetika fyziologie MeSH
- krysa rodu rattus MeSH
- ledviny patofyziologie MeSH
- potkani transgenní MeSH
- renin-angiotensin systém fyziologie MeSH
- renin genetika MeSH
- sodík dietní * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.
- MeSH
- hemoxygenasa-1 genetika metabolismus MeSH
- infarkt myokardu farmakoterapie genetika metabolismus patofyziologie MeSH
- krevní tlak MeSH
- krysa rodu rattus MeSH
- kyseliny arachidonové aplikace a dávkování chemie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- potkani inbrední SHR MeSH
- srdce patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
OBJECTIVE: We examined the effects of treatment with soluble epoxide hydrolase inhibitor (sEHi) and epoxyeicosatrienoic acids (EETs) analogue (EET-A), given alone or combined, on blood pressure (BP) and ischemia/reperfusion myocardial injury in rats with angiotensin II (ANG II)-dependent hypertension. METHODS: Ren-2 transgenic rats (TGR) were used as a model of ANG II-dependent hypertension and Hannover Sprague-Dawley rats served as controls. Rats were treated for 14 days with sEHi or EET-A and BP was measured by radiotelemetry. Albuminuria, cardiac hypertrophy and concentrations of ANG II and EETs were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury and the infarct size and ventricular arrhythmias were determined. RESULTS: Treatment of TGR with sEHi and EET-A, given alone or combined, decreased BP to a similar degree, reduced albuminuria and cardiac hypertrophy to similar extent; only treatment regimens including sEHi increased myocardial and renal tissue concentrations of EETs. sEHi and EET-A, given alone or combined, suppressed kidney ANG II levels in TGR. Remarkably, infarct size did not significantly differ between TGR and Hannover Sprague-Dawley rats, but the incidence of ischemia-induced ventricular fibrillations was higher in TGR. Application of sEHi and EET-A given alone and combined sEHi and EET-A treatment were all equally effective in reducing life-threatening ventricular fibrillation in TGR. CONCLUSION: The findings indicate that chronic treatment with either sEHi or EET-A exerts distinct antihypertensive and antiarrhythmic actions in our ANG II-dependent model of hypertension whereas combined administration of sEHi and EET-A does not provide additive antihypertensive or cardioprotective effects.
- MeSH
- albuminurie metabolismus MeSH
- angiotensin II metabolismus MeSH
- antihypertenziva farmakologie MeSH
- hypertenze metabolismus MeSH
- krevní tlak účinky léků MeSH
- krysa rodu rattus MeSH
- kyseliny arachidonové farmakologie MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- srdeční arytmie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
We hypothesized that vascular actions of 20-hydroxyeicosatetraenoic acid (20-HETE), the product of cytochrome P450 (CYP450)-dependent ω-hydroxylase, potentiate prohypertensive actions of angiotensin II (ANG II) in Cyp1a1-Ren-2 transgenic rats, a model of ANG II-dependent malignant hypertension. Therefore, we evaluated the antihypertensive effectiveness of 20-HETE receptor antagonist (AAA) in this model. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. Treatment with AAA was started either simultaneously with induction of hypertension or 10 days later, during established hypertension. Systolic blood pressure (SBP) was monitored by radiotelemetry, indices of renal and cardiac injury, and kidney ANG II levels were determined. In I3C-induced hypertensive rats, early AAA treatment reduced SBP elevation (to 161 ± 3 compared with 199 ± 3 mmHg in untreated I3C-induced rats), reduced albuminuria, glomerulosclerosis index, and cardiac hypertrophy (P<0.05 in all cases). Untreated I3C-induced rats showed augmented kidney ANG II (405 ± 14 compared with 52 ± 3 fmol/g in non-induced rats, P<0.05) which was markedly lowered by AAA treatment (72 ± 6 fmol/g). Remarkably, in TGR with established hypertension, AAA also decreased SBP (from 187 ± 4 to 158 ± 4 mmHg, P<0.05) and exhibited organoprotective effects in addition to marked suppression of kidney ANG II levels. In conclusion, 20-HETE antagonist attenuated the development and largely reversed the established ANG II-dependent malignant hypertension, likely via suppression of intrarenal ANG II levels. This suggests that intrarenal ANG II activation by 20-HETE is important in the pathophysiology of this hypertension form.
- MeSH
- amidy farmakologie MeSH
- angiotensin II metabolismus MeSH
- antihypertenziva farmakologie MeSH
- blokátory receptorů AT1 pro angiotensin II farmakologie MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- hypertenze maligní chemicky indukované farmakoterapie metabolismus MeSH
- indoly toxicita MeSH
- kyseliny hydroxyeikosatetraenové antagonisté a inhibitory metabolismus MeSH
- ledviny účinky léků metabolismus MeSH
- potkani transgenní MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
We showed recently that increasing kidney epoxyeicosatrienoic acids (EETs) by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, retarded the development of renal dysfunction and progression of aorto-caval fistula(ACF)-induced congestive heart failure (CHF) in Ren-2 transgenic hypertensive rats (TGR). In that study the final survival rate of untreated ACF TGR was only 14 % but increased to 41 % after sEH blockade. Here we examined if sEH inhibition added to renin-angiotensin system (RAS) blockade would further enhance protection against ACF-induced CHF in TGR. The treatment regimens were started one week after ACF creation and the follow-up period was 50 weeks. RAS was blocked using angiotensin-converting enzyme inhibitor (ACEi, trandolapril, 6 mg/l) and sEH with an sEH inhibitor (sEHi, c-AUCB, 3 mg/l). Renal hemodynamics and excretory function were determined two weeks post-ACF, just before the onset of decompensated phase of CHF. 29 weeks post-ACF no untreated animal survived. ACEi treatment greatly improved the survival rate, to 84 % at the end of study. Surprisingly, combined treatment with ACEi and sEHi worsened the rate (53 %). Untreated ACF TGR exhibited marked impairment of renal function and the treatment with ACEi alone or combined with sEH inhibition did not prevent it. In conclusion, addition of sEHi to ACEi treatment does not provide better protection against CHF progression and does not increase the survival rate in ACF TGR: indeed, the rate decreases significantly. Thus, combined treatment with sEHi and ACEi is not a promising approach to further attenuate renal dysfunction and retard progression of CHF.
- MeSH
- arteriovenózní píštěl MeSH
- benzoáty farmakologie terapeutické užití MeSH
- epoxid hydrolasy antagonisté a inhibitory MeSH
- indoly terapeutické užití MeSH
- inhibitory ACE terapeutické užití MeSH
- kombinovaná farmakoterapie MeSH
- krysa rodu rattus MeSH
- močovina analogy a deriváty farmakologie terapeutické užití MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- preklinické hodnocení léčiv MeSH
- renální insuficience etiologie prevence a kontrola MeSH
- srdeční selhání komplikace farmakoterapie mortalita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Early addition of endothelin (ET) type A (ETA) receptor blockade to complex renin-angiotensin system (RAS) blockade has previously been shown to provide better renoprotection against progression of chronic kidney disease (CKD) in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX). In this study, we examined if additional protection is provided when ETA blockade is applied in rats with already developed CKD. METHODS: For complex RAS inhibition, an angiotensin-converting enzyme inhibitor along with angiotensin II type 1 receptor blocker was used. Alternatively, ETA receptor blocker was added to the RAS blockade. The treatments were initiated 6 weeks after 5/6 NX and the follow-up period was 50 weeks. RESULTS: When applied in established CKD, addition of ETA receptor blockade to the complex RAS blockade brought no further improvement of the survival rate (30% in both groups); surprisingly, aggravated albuminuria (588 ± 47 vs. 245 ± 38 mg/24 h, p < 0.05) did not reduce renal glomerular injury index (1.25 ± 0.29 vs. 1.44 ± 0.26), did not prevent the decrease in creatinine clearance (203 ± 21 vs. 253 ± 17 μl/min/100 g body weight), and did not attenuate cardiac hypertrophy to a greater extent than observed in 5/6 NX TGR treated with complex RAS blockade alone. CONCLUSIONS: When applied in the advanced phase of CKD, addition of ETA receptor blockade to the complex RAS blockade brings no further beneficial renoprotective effects on the CKD progression in 5/6 NX TGR, in addition to those seen with RAS blockade alone.
- MeSH
- albuminurie MeSH
- angiotensiny účinky léků metabolismus MeSH
- antagonisté endotelinového receptoru A farmakologie MeSH
- blokátory receptorů AT1 pro angiotensin II farmakologie MeSH
- chronická renální insuficience metabolismus MeSH
- hodnoty glomerulární filtrace účinky léků MeSH
- hypertenze MeSH
- indoly farmakologie MeSH
- inhibitory ACE farmakologie MeSH
- kardiomegalie MeSH
- kombinovaná farmakoterapie MeSH
- kreatinin metabolismus MeSH
- krevní tlak účinky léků MeSH
- krysa rodu rattus MeSH
- ledviny účinky léků metabolismus MeSH
- losartan farmakologie MeSH
- míra přežití MeSH
- nefrektomie MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- progrese nemoci MeSH
- pyrrolidiny farmakologie MeSH
- receptor endotelinu A účinky léků metabolismus MeSH
- receptor endotelinu B účinky léků metabolismus MeSH
- renin-angiotensin systém účinky léků MeSH
- renin účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH