BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.
- MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární * genetika MeSH
- duševní poruchy * genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- pokus o sebevraždu MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
American journal of psychiatry, ISSN 0002-953X Vol. 166, no. 2, February 2009
2nd ed. 68 s. : tab. ; 28 cm
- MeSH
- panická porucha terapie MeSH
- směrnice pro lékařskou praxi jako téma MeSH
- Publikační typ
- směrnice MeSH
- Konspekt
- Psychiatrie
- NLK Obory
- psychiatrie
- MeSH
- antidepresiva druhé generace MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- paroxetin terapeutické užití MeSH
- selektivní inhibitory zpětného vychytávání serotoninu MeSH
- senioři MeSH
- sociální psychologie MeSH
- úzkostné poruchy epidemiologie farmakoterapie psychologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- klinické zkoušky MeSH
- srovnávací studie MeSH
strana 804-809 : ilustrace ; 28 cm
Randomizovaná kontrolovaná studie, která se zaměřila na testování účinnosti anxiolytika paroxetinu v léčbě úzkostné sociální poruchy. Určeno odborné veřejnosti.
- MeSH
- anxiolytika MeSH
- paroxetin MeSH
- placebo MeSH
- sociálně-úzkostná porucha farmakoterapie MeSH
- Publikační typ
- randomizované kontrolované studie MeSH
- srovnávací studie MeSH
- Konspekt
- Farmacie. Farmakologie
- NLK Obory
- psychofarmakologie
- psychiatrie