Cíl: Podrobnější přehled historie, současného stavu a nynějších trendů v získávání 68Ga, především z 68Ge/68Ga radionuklidového generátoru. Úvod: Pozitronová emisní tomografie (PET) je jednou z nejmodernějších metod nukleární medicíny. Stále nejhojněji využívaným radionuklidem při diagnostice pomocí PET je 18F, ale do popředí se dostávají i další pozitronové zářiče a velká pozornost je věnována právě 68Ga. Nespornou výhodou tohoto radionuklidu je způsob jeho získání. Oproti ostatním radionuklidům využívaným v PET diagnostice, které jsou připravovány téměř výhradně na cyklotronu, je 68Ga možné získat i pomocí radionuklidového generátoru, což výrazně zjednodušuje a urychluje další kroky jeho použití. Popis problematiky: Vývoj 68Ge/68Ga radionuklidových generátorů představoval komplexní výzkum separačních systémů, které jsou i dnes aktuálním tématem. V současnosti je dostupná řada separačních systémů, z nichž některé jsou již registrovány u Evropské agentury pro léčivé přípravky (EMA) či amerického Úřadu pro kontrolu potravin a léčiv (FDA) pro použití v humánní medicíně. Jiné jsou dostupné pouze pro výzkum a vývoj. S ohledem na technologické a legislativní těžkosti spojené s vývojem 68Ge/68Ga radionuklidového generátoru je navržení systému, který by poskytoval eluát 68Ga ve vhodné chemické formě a dostatečné radiochemické a radionuklidové čistotě, stále velkou výzvou a rozsáhlému studiu je věnována pozornost mnoha vědeckých týmů z celého světa. V České republice je dosud registrován jeden 68Ge/68Ga radionuklidový generátor a jeden kit pro značení 68Ga, SomaKit TOC pro diagnostiku neuroendokrinních tumorů (NET). Další kit, 68Ga-PSMA-11, je pak využíván pro diagnostiku karcinomu prostaty v rámci specifického léčebného programu. Ve světovém měřítku není však využití tohoto radionuklidu omezeno pouze na tyto aplikace a 68Ga je stále ve větší oblibě. Závěr: Rozsáhlé studie separačních systémů a cílících molekul by mohly v budoucnu vést u některých diagnostických procedur k nahrazení tradičního PET radionuklidu 18F právě 68Ga a to především díky možnosti eluce z radionuklidového generátoru.
Aim: Review of history, state of art and trends in gaining of 68Ga, especially from 68Ga/68Ge radionuclide generators. Introduction: Positron emission tomography (PET) is one of the most modern methods of nuclear medicine. Fluorine-18 is the most frequently used radionuclide for PET diagnostics, but there are other emerging radionuclides and the great attention is paid to 68Ga. The undeniable advantage of this radionuclide is its way of production. In contrast with other radionuclides for PET diagnostics almost exclusively prepared in the cyclotron, 68Ga can be gained also from a radionuclide generator which significantly simplifies and speeds up other steps of its use. Issue description: The development of 68Ge/68Ga radionuclide generators has been performed through the research of new separation systems which still remains a hot topic. Nowadays, the variety of separation systems is available. Some of them have a registration by European Medicines Agency (EMA) or American Food and Drug Administration (FDA) for use in human medicine. Others are suitable just for research and development. Regarding to technological and legislative difficulties connected with the development of 68Ge/68Ga radionuclide generator, the design of a system providing the eluate of 68Ga in convenient chemical form and sufficient radiochemical and radionuclide purity remains a great challenge and research teams around the world focus on the topic. Nowadays, there is one 68Ge/68Ga radionuclide generator and one kit for 68Ga labelling, SomaKit TOC, used for neuroendocrine tumours diagnostics registered in the Czech Republic. Other kit, 68Ga-PSMA-11, is used for diagnostics of prostate cancer in the specific treatment programme. However, the use of this radionuclide is not limited for these only applications and 68Ga enjoys the growing popularity in the world scale. Conclusion: Even though 18F remains the radionuclide of choice in PET, broad studies of separation systems and targeting molecules could lead to his replacement by 68Ga, mainly for the possibility of its elution from radionuclide generators.
- Klíčová slova
- gallium-68, germanium-68,
- MeSH
- pozitronová emisní tomografie * dějiny metody MeSH
- radioisotopové generátory * dějiny přístrojové vybavení MeSH
- radioizotopy galia * MeSH
- radionuklidy MeSH
- Publikační typ
- přehledy MeSH
Cíl: Podrobnější přehled běžně používaných 99Mo/99mTc generátorů a samotného 99mTc. Úvod: Technecium-99m je jedním z nejpoužívanějších diagnostických radionuklidů v nukleární medicíně. Denně je získáváno na pracovištích nukleární medicíny z radionuklidového generátoru 99Mo/99mTc pro potřeby přípravy širokého spektra radiofarmak. Téměř 90 % všech SPECT vyšetření je prováděno právě s pomocí radiofarmak značených 99mTc. Popis problematiky: Avšak za touto každodenní činností se skrývá nemálo procesů, které nejsou na první pohled vidět – od různých možností přípravy mateřského radionuklidu, přes jednotlivé konstrukce samotných radionuklidových generátorů až po zisk 99mTc. Také je pozornost v rámci tohoto článku zaměřena na důležité chemické a fyzikální vlastnosti 99mTc, díky kterým je tak hojně využíváno. I přes tyto procesy a vlastnosti je důležité nezapomínat ani na kontrolu kvality, kterou je nutné provádět před samotným použitím ať už eluátu či připraveného radiofarmaka. Technecium-99m je běžně využíváno pro diagnostiku nejen onkologických onemocnění. Své uplatnění nachází v kardiologii, nefrologii či neurologii. V rámci tohoto článku je uveden přehled nejběžněji používaných radiofarmak s možností jejich využití. Závěr: Důležitost 99Mo/99mTc generátoru je patrná a na jeho základě stojí většina vyšetření na pracovištích nukleární medicíny. Z tohoto důvodu je důležité si připomenout principy výroby a přípravy daných radionuklidů a dále vlastnosti, díky kterým je možné poměrně jednoduše daná radiofarmaka připravovat.
Aim: Review of daily used 99Mo/99mTc generator and 99mTc radionuclide itself. Introduction: Technetium-99m is one of the most widely used diagnostic radionuclides in nuclear medicine. It is daily obtained from 99Mo/99mTc radionuclide generator at nuclear medicine departments. It is mostly used for the preparation of a wide range of radiopharmaceuticals. Almost 90 % of all SPECT examinations are performed by 99mTc-labeled radiopharmaceuticals. Issue description: However, there are many processes behind these everyday operations that are not visible at first glance - from the various options of parent radionuclide preparation, through the individual radionuclide generators’ design, to the 99mTc elution itself. In this article, the attention is also focused on the important chemical and physical properties of the radionuclide - 99mTc, which makes it so widely used. Despite these processes and properties, it is important not to forget the quality control, which must be carried out before use, whether as regards the eluate or the prepared radiopharmaceutical. Technetium-99m is commonly used not only to cancer diagnoses. It is also used in cardiology, nephrology or neurology. This article provides an overview of the most commonly used radiopharmaceuticals with their possible usage. Conclusion: The importance of 99Mo/99mTc generator is evident and most examinations in nuclear medicine are based on it. For this reason, it is important to occasionally review the principles of production and preparation of given radionuclides and moreover, the characteristics that make it possible to prepare given radiopharmaceuticals quite easily. However, it is necessary also to mention the pitfalls and problems that these processes bring with them.
- Klíčová slova
- technecium-99m, molybden-99,
- MeSH
- lidé MeSH
- organotechneciové sloučeniny MeSH
- radiofarmaka MeSH
- radioisotopové generátory * MeSH
- řízení kvality MeSH
- technecium MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Cíl: Podrobnější přehled historie, současného stavu a nynějších trendů v získávání 68Ga, především z 68Ge/68Ga radionuklidového generátoru. Úvod: Pozitronová emisní tomografie (PET) je jednou z nejmodernějších metod nukleární medicíny. Stále nejhojněji využívaným radionuklidem při diagnostice pomocí PET je 18F, ale do popředí se dostávají i další pozitronové zářiče a velká pozornost je věnována právě 68Ga. Nespornou výhodou tohoto radionuklidu je způsob jeho získání. Oproti ostatním radionuklidům využívaným v PET diagnostice, které jsou připravovány téměř výhradně na cyklotronu, je 68Ga možné získat i pomocí radionuklidového generátoru, což výrazně zjednodušuje a urychluje další kroky jeho použití. Popis problematiky: Vývoj 68Ge/68Ga radionuklidových generátorů představoval komplexní výzkum separačních systémů, které jsou i dnes aktuálním tématem. V současnosti je dostupná řada separačních systémů, z nichž některé jsou již registrovány u Evropské agentury pro léčivé přípravky (EMA) či amerického Úřadu pro kontrolu potravin a léčiv (FDA) pro použití v humánní medicíně. Jiné jsou dostupné pouze pro výzkum a vývoj. S ohledem na technologické a legislativní těžkosti spojené s vývojem 68Ge/68Ga radionuklidového generátoru je navržení systému, který by poskytoval eluát 68Ga ve vhodné chemické formě a dostatečné radiochemické a radionuklidové čistotě, stále velkou výzvou a rozsáhlému studiu je věnována pozornost mnoha vědeckých týmů z celého světa. V České republice je dosud registrován jeden 68Ge/68Ga radionuklidový generátor a jeden kit pro značení 68Ga, SomaKit TOC pro diagnostiku neuroendokrinních tumorů (NET). Další kit, 68Ga-PSMA-11, je pak využíván pro diagnostiku karcinomu prostaty v rámci specifického léčebného programu. Ve světovém měřítku není však využití tohoto radionuklidu omezeno pouze na tyto aplikace a 68Ga je stále ve větší oblibě. Závěr: Rozsáhlé studie separačních systémů a cílících molekul by mohly v budoucnu vést u některých diagnostických procedur k nahrazení tradičního PET radionuklidu 18F právě 68Ga a to především díky možnosti eluce z radionuklidového generátoru.
Aim: Review of history, state of art and trends in gaining of 68Ga, especially from 68Ga/68Ge radionuclide generators. Introduction: Positron emission tomography (PET) is one of the most modern methods of nuclear medicine. Fluorine-18 is the most frequently used radionuclide for PET diagnostics, but there are other emerging radionuclides and the great attention is paid to 68Ga. The undeniable advantage of this radionuclide is its way of production. In contrast with other radionuclides for PET diagnostics almost exclusively prepared in the cyclotron, 68Ga can be gained also from a radionuclide generator which significantly simplifies and speeds up other steps of its use. Issue description: The development of 68Ge/68Ga radionuclide generators has been performed through the research of new separation systems which still remains a hot topic. Nowadays, the variety of separation systems is available. Some of them have a registration by European Medicines Agency (EMA) or American Food and Drug Administration (FDA) for use in human medicine. Others are suitable just for research and development. Regarding to technological and legislative difficulties connected with the development of 68Ge/68Ga radionuclide generator, the design of a system providing the eluate of 68Ga in convenient chemical form and sufficient radiochemical and radionuclide purity remains a great challenge and research teams around the world focus on the topic. Nowadays, there is one 68Ge/68Ga radionuclide generator and one kit for 68Ga labelling, SomaKit TOC, used for neuroendocrine tumours diagnostics registered in the Czech Republic. Other kit, 68Ga-PSMA-11, is used for diagnostics of prostate cancer in the specific treatment programme. However, the use of this radionuclide is not limited for these only applications and 68Ga enjoys the growing popularity in the world scale. Conclusion: Even though 18F remains the radionuclide of choice in PET, broad studies of separation systems and targeting molecules could lead to his replacement by 68Ga, mainly for the possibility of its elution from radionuclide generators.
- MeSH
- germanium * MeSH
- izotopové značení MeSH
- lidé MeSH
- pozitronová emisní tomografie * dějiny trendy MeSH
- radioisotopové generátory * MeSH
- radioizotopy galia * MeSH
- radionuklidy * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
- Publikační typ
- abstrakt z konference MeSH
Cíl: Podrobnější přehled běžně používaných 99Mo/99mTc generátorů a samotného 99mTc. Úvod: Technecium-99m je jedním z nejpoužívanějších diagnostických radionuklidů v nukleární medicíně. Denně je získáváno na pracovištích nukleární medicíny z radionuklidového generátoru 99Mo/99mTc pro potřeby přípravy širokého spektra radiofarmak. Téměř 90 % všech SPECT vyšetření je prováděno právě s pomocí radiofarmak značených 99mTc. Popis problematiky: Avšak za touto každodenní činností se skrývá nemálo procesů, které nejsou na první pohled vidět – od různých možností přípravy mateřského radionuklidu, přes jednotlivé konstrukce samotných radionuklidových generátorů až po zisk 99mTc. Také je pozornost v rámci tohoto článku zaměřena na důležité chemické a fyzikální vlastnosti 99mTc, díky kterým je tak hojně využíváno. I přes tyto procesy a vlastnosti je důležité nezapomínat ani na kontrolu kvality, kterou je nutné provádět před samotným použitím ať už eluátu či připraveného radiofarmaka. Technecium-99m je běžně využíváno pro diagnostiku nejen onkologických onemocnění. Své uplatnění nachází v kardiologii, nefrologii či neurologii. V rámci tohoto článku je uveden přehled nejběžněji používaných radiofarmak s možností jejich využití. Závěr: Důležitost 99Mo/99mTc generátoru je patrná a na jeho základě stojí většina vyšetření na pracovištích nukleární medicíny. Z tohoto důvodu je důležité si připomenout principy výroby a přípravy daných radionuklidů a dále vlastnosti, díky kterým je možné poměrně jednoduše daná radiofarmaka připravovat.
Aim: Review of daily used 99Mo/99mTc generator and 99mTc radionuclide itself. Introduction: Technetium-99m is one of the most widely used diagnostic radionuclides in nuclear medicine. It is daily obtained from 99Mo/99mTc radionuclide generator at nuclear medicine departments. It is mostly used for the preparation of a wide range of radiopharmaceuticals. Almost 90 % of all SPECT examinations are performed by 99mTc-labeled radiopharmaceuticals. Issue description: However, there are many processes behind these everyday operations that are not visible at first glance - from the various options of parent radionuclide preparation, through the individual radionuclide generators’ design, to the 99mTc elution itself. In this article, the attention is also focused on the important chemical and physical properties of the radionuclide – 99mTc, which makes it so widely used. Despite these processes and properties, it is important not to forget the quality control, which must be carried out before use, whether as regards the eluate or the prepared radiopharmaceutical. Technetium-99m is commonly used not only to cancer diagnoses. It is also used in cardiology, nephrology or neurology. This article provides an overview of the most commonly used radiopharmaceuticals with their possible usage. Conclusion: The importance of 99Mo/99mTc generator is evident and most examinations in nuclear medicine are based on it. For this reason, it is important to occasionally review the principles of production and preparation of given radionuclides and moreover, the characteristics that make it possible to prepare given radiopharmaceuticals quite easily. However, it is necessary also to mention the pitfalls and problems that these processes bring with them.
- Klíčová slova
- radionuklidový generátor, jaderný reaktor,
- MeSH
- lidé MeSH
- molybden MeSH
- radiofarmaka * MeSH
- radioisotopové generátory MeSH
- řízení kvality MeSH
- technecium MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Cíl: Představení a shrnutí nejdůležitějších poznatků spojených s produkcí generátorových radionuklidů, s principy funkce a konstrukce radionuklidových generátorů s jejich využíváním v nukleární medicíně a s kontrolou kvality. Úvod: Radionuklidové generátory jsou již několik desítek let nedílnou součástí celého procesu na pracovištích nukleární medicíny. Díky nim je možné velice jednoduše získávat krátkodobé radionuklidy potřebné především pro diagnostické účely. Popis problematiky: Generátorový systém je založen na vztahu mezi mateřským a dceřiným radionuklidem. Díky jejich specifickým chemickým vlastnostem lze jednoduchou cestou získávat beznosičový preparát dceřiného radionuklidu pro další okamžité použití. Získaný radionuklid je používán buď přímo k aplikaci pacientovi, nebo je s jeho pomocí připraveno radiofarmakum, které je následně aplikováno. Abychom mohli pravidelně získávat dceřiný radionuklid, je nejprve nutné připravit radionuklid mateřský, čehož lze docílit buď v jaderném reaktoru anebo pomocí urychlovače částic. Obecný koncept radionuklidových generátorů je do jisté míry podobný, avšak jednotlivá technická provedení se výrazně odlišují. Mateřský radionuklid je zakotven v jisté chemické formě uvnitř systému, který je stíněn, a dceřiný radionuklid je následně získáván v potřebné chemické formě. Z důvodu bezpečnosti pacientů je nutné dodržovat určitá pravidla používání a kontrolovat kvalitu eluátu, aby nedocházelo k nadbytečné radiační zátěži či znehodnocení vyšetření. Závěr: Všechny výše jmenované aspekty jsou podrobněji probrány a shrnuty v rámci tohoto pojednání. Potřeba radionuklidových generátorů v nukleární medicíně je zjevná a je třeba jim věnovat pozornost. Výzkum a vývoj nových typů generátorů založených i na nových radionuklidech je velmi důležitý. S jejich pomocí budou další nové radionuklidy dostupnější a budeme opět o krok blíže personalizované medicíně.
Aim: Presentation and summarisation of the most important findings related to the production of generator radionuclides, the principles of function and construction of radionuclide generators and their use in nuclear medicine and to the quality assurance. Introduction: Radionuclide generators have been an integral part of the entire processes in nuclear medicine departments for decades. They allow to obtain short-lived radionuclides necessary for diagnostic purposes very easily. Description of issues: The generator system is based on the relationship between parent and daughter radionuclide. Due to their specific chemical properties, a carrier-free preparation of daughter radionuclide can be obtained in a simple way for immediate use. The obtained radionuclide is either used directly for administration to the patient, or a radiopharmaceutical is prepared and subsequently applied. For the obtaining of daughter radionuclide regularly, it is necessary to prepare the parent radionuclide at first, which can be achieved either in a nuclear reactor or a cyclotron. The general concept of radionuclide generators is to some extent similar, but the technical designs differ significantly. The parent radionuclide is immobilised in a certain chemical form within the system, which is shielded, and the daughter radionuclide is subsequently recovered in the certain chemical form. For patient’s safety, it is necessary to follow quality assurance rules of use and the quality control of the eluate in order to avoid unnecessary radiation exposure or the deterioration of examination. Conclusions: All of the above-mentioned aspects are discussed in more detail and summarized in this paper. The need for radionuclide generators in nuclear medicine is evident and requires attention. Research and development of new types of generators based also on new radionuclides is very important. With their help, other new radionuclides will be more accessible and we will be one step closer to the personalized medicine.
- Klíčová slova
- radionuklidový generátor,
- MeSH
- atomové reaktory MeSH
- cyklotrony MeSH
- příprava léků MeSH
- radiofarmaka * MeSH
- radionuklidy * MeSH
- řízení kvality MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
Cíl: Shrnutí vývoje terapie pomocí radionuklidů a potenciálu alfa radionuklidů v cílené terapii. Úvod: Zájem o radionuklidy emitující alfa částice v nukleární medicíně vzrůstá. V rámci cílené alfa terapie jsou využívány nejen samotné radionuklidy podléhající jedné nebo několika alfa přeměnám, ale dochází především k vývoji nosičů alfa zářičů se specifickou akumulací v nádorových buňkách, následně využitelných jako radiofarmak. Materiál: Radium se již od roku 1908, tedy necelých deset let po jeho objevu, používalo v medicíně především k léčbě kožních onemocnění. Od té doby prošla terapie pomocí radionuklidů dlouhou cestu – od 226Ra, přes negatronové zářiče, 211At, až po nuklidy tvořící krátké rozpadové řady označované jako in vivo generátory, např.: 225Ac, 213Bi či 223Ra. Předností alfa terapie je uvolnění vysoké energie v malém objemu, čímž dochází k nižší radiační zátěži okolních tkání. Díky vysokému LET alfa částic vznikají dvojité zlomy DNA, které jsou pro buňku letální. Z tohoto důvodu by měly být nosiče alfa radionuklidů schopné odolat vysoké uvolněné energii, aby nedošlo k jejich radiolýze. Rovněž je důležitá stabilizace odraženého dceřiného radionuklidu tak, aby nedošlo k jeho úniku do okolní tkáně, a tedy k jejímu poškození. Mezi studovanými nosiči alfa radionuklidů převažují anorganické nanomateriály, např. nanočástice oxidu železa, titanu, zlata či hydroxyapatity. Závěr: Výzkum cílené alfa terapie otevírá cestu k léčbě některých druhů nádorových onemocnění, především ke zvýšení kvality a prodloužení života pacientů. Proto by mělo být i nadále věnováno úsilí přípravě nových radionuklidů, vhodných jak pro včasnou diagnostiku, tak i pro následnou terapii. Patřičná pozornost by měla být rovněž dedikována nosičům terapeutických radionuklidů, nejlépe splňujících i teranostický koncept, s ohledem na jejich chemickou a radiační stabilitu a dostupnost.
Aim: Summary of the development of therapy using radionuclides and potential of alpha radionuclides in targeted therapy. Introduction: The interest aimed on radionuclides emitting alpha particles is constantly growing in nuclear medicine. In the case of targeted alpha therapy, not only radionuclides decaying by one or several alphas are used, but also the suitable carriers for these radionuclides are developed and could be used as radiopharmaceuticals. Material: Since 1908, less than ten years after its discovery, radium had been used in medicine mainly to treat skin diseases. Since then therapy using radionuclides has gone a long way – from radium-226, through electron emitters, 211At, to nuclides forming short-lived decay chains known as in vivo generators, e.g. 225Ac, 213Bi or 223Ra. The advantage of alpha therapy is the release of a high energy in a small volume, which leads to lower radiation exposure of surrounding tissues. Due to the high LET of alpha particles, double-strand breaks of DNA molecules, which are lethal for the cell, are formed. For this reason, the carriers of alpha radionuclides should resist to the high released energy, in order to prevent its radiolysis. The stabilisation of reflected daughter nuclide is also important because of its release into surrounding tissue and thus its damage. Among studied carriers of alpha radionuclides inorganic nanomaterials dominate, e.g. iron, titanium or gold oxide nanoparticles or hydroxyapatite. Conclusions: The research in the field of targeted alpha therapy opens the way to treatment of some types of cancerous diseases and especially the increase of patients’ life quality and its extension. Therefore, the effort to prepare new radionuclides should continue, suitable both for early diagnosis and subsequent therapy. Particular attention should also be given to the therapeutic radionuclide carriers, best suited to the theranostic concept, with regard to their chemical and radiation stability and availability.
- Klíčová slova
- alfa radionuklidy,
- MeSH
- lidé MeSH
- nanočástice MeSH
- radionuklidy * terapeutické užití MeSH
- teranostická nanomedicína metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH