Interactions between enzymes and small molecules lie in the center of many fundamental biochemical processes. Their analysis using molecular dynamics simulations have high computational demands, geometric approaches fail to consider chemical forces, and molecular docking offers only static information. Recently, we proposed to combine molecular docking and geometric approaches in an application called CaverDock. CaverDock is discretizing enzyme tunnel into discs, iteratively docking with restraints into one disc after another and searching for a trajectory of the ligand passing through the tunnel. Here, we focus on the practical side of its usage describing the whole method: from getting the application, and processing the data through a workflow, to interpreting the results. Moreover, we shared the best practices, recommended how to solve the most common issues, and demonstrated its application on three use cases.
- MeSH
- chlorhydriny chemie MeSH
- ethanol analogy a deriváty chemie MeSH
- ethylendibromid chemie MeSH
- hydrolasy chemie MeSH
- kyselina arachidonová chemie MeSH
- ligandy MeSH
- objevování léků metody MeSH
- proteiny chemie MeSH
- racionální návrh léčiv MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu metody MeSH
- software MeSH
- systém (enzymů) cytochromů P-450 chemie MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pathological pulmonary symptoms. Most efforts to develop vaccines and drugs against this virus target the spike glycoprotein, particularly its S1 subunit, which is recognised by angiotensin-converting enzyme 2. Here we use the in-house developed tool CaverDock to perform virtual screening against spike glycoprotein using a cryogenic electron microscopy structure (PDB-ID: 6VXX) and the representative structures of five most populated clusters from a previously published molecular dynamics simulation. The dataset of ligands was obtained from the ZINC database and consists of drugs approved for clinical use worldwide. Trajectories for the passage of individual drugs through the tunnel of the spike glycoprotein homotrimer, their binding energies within the tunnel, and the duration of their contacts with the trimer's three subunits were computed for the full dataset. Multivariate statistical methods were then used to establish structure-activity relationships and select top candidate for movement inhibition. This new protocol for the rapid screening of globally approved drugs (4359 ligands) in a multi-state protein structure (6 states) showed high robustness in the rate of finished calculations. The protocol is universal and can be applied to any target protein with an experimental tertiary structure containing protein tunnels or channels. The protocol will be implemented in the next version of CaverWeb (https://loschmidt.chemi.muni.cz/caverweb/) to make it accessible to the wider scientific community.
- Publikační typ
- časopisecké články MeSH
MOTIVATION: Protein tunnels and channels are key transport pathways that allow ligands to pass between proteins' external and internal environments. These functionally important structural features warrant detailed attention. It is difficult to study the ligand binding and unbinding processes experimentally, while molecular dynamics simulations can be time-consuming and computationally demanding. RESULTS: CaverDock is a new software tool for analysing the ligand passage through the biomolecules. The method uses the optimized docking algorithm of AutoDock Vina for ligand placement docking and implements a parallel heuristic algorithm to search the space of possible trajectories. The duration of the simulations takes from minutes to a few hours. Here we describe the implementation of the method and demonstrate CaverDock's usability by: (i) comparison of the results with other available tools, (ii) determination of the robustness with large ensembles of ligands and (iii) the analysis and comparison of the ligand trajectories in engineered tunnels. Thorough testing confirms that CaverDock is applicable for the fast analysis of ligand binding and unbinding in fundamental enzymology and protein engineering. AVAILABILITY AND IMPLEMENTATION: User guide and binaries for Ubuntu are freely available for non-commercial use at https://loschmidt.chemi.muni.cz/caverdock/. The web implementation is available at https://loschmidt.chemi.muni.cz/caverweb/. The source code is available upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Caver Web 1.0 is a web server for comprehensive analysis of protein tunnels and channels, and study of the ligands' transport through these transport pathways. Caver Web is the first interactive tool allowing both the analyses within a single graphical user interface. The server is built on top of the abundantly used tunnel detection tool Caver 3.02 and CaverDock 1.0 enabling the study of the ligand transport. The program is easy-to-use as the only required inputs are a protein structure for a tunnel identification and a list of ligands for the transport analysis. The automated guidance procedures assist the users to set up the calculation in a way to obtain biologically relevant results. The identified tunnels, their properties, energy profiles and trajectories for ligands' passages can be calculated and visualized. The tool is very fast (2-20 min per job) and is applicable even for virtual screening purposes. Its simple setup and comprehensive graphical user interface make the tool accessible for a broad scientific community. The server is freely available at https://loschmidt.chemi.muni.cz/caverweb.
- MeSH
- algoritmy * MeSH
- benchmarking MeSH
- interakční proteinové domény a motivy MeSH
- internet MeSH
- kvarterní struktura proteinů MeSH
- lidé MeSH
- ligandy MeSH
- sekvence aminokyselin MeSH
- simulace molekulového dockingu MeSH
- terciární struktura proteinů MeSH
- transportní proteiny chemie metabolismus MeSH
- uživatelské rozhraní počítače * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications.IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols.
- MeSH
- Bacteria enzymologie genetika metabolismus MeSH
- biokatalýza MeSH
- biotechnologie MeSH
- hydrolasy chemie genetika izolace a purifikace metabolismus MeSH
- katalytická doména MeSH
- katalýza MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- krystalizace MeSH
- metagenom MeSH
- mikrobiální společenstva genetika fyziologie MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
HotSpot Wizard 2.0 is a web server for automated identification of hot spots and design of smart libraries for engineering proteins' stability, catalytic activity, substrate specificity and enantioselectivity. The server integrates sequence, structural and evolutionary information obtained from 3 databases and 20 computational tools. Users are guided through the processes of selecting hot spots using four different protein engineering strategies and optimizing the resulting library's size by narrowing down a set of substitutions at individual randomized positions. The only required input is a query protein structure. The results of the calculations are mapped onto the protein's structure and visualized with a JSmol applet. HotSpot Wizard lists annotated residues suitable for mutagenesis and can automatically design appropriate codons for each implemented strategy. Overall, HotSpot Wizard provides comprehensive annotations of protein structures and assists protein engineers with the rational design of site-specific mutations and focused libraries. It is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.
- MeSH
- automatizace MeSH
- biokatalýza MeSH
- databáze proteinů MeSH
- internet * MeSH
- molekulární evoluce MeSH
- molekulární modely MeSH
- mutace * MeSH
- mutageneze cílená metody MeSH
- peptidová knihovna * MeSH
- proteiny chemie genetika MeSH
- software * MeSH
- stabilita proteinů MeSH
- substituce aminokyselin MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH