BACKGROUND: Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS: We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS: Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION: Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
- MeSH
- cholinesterasové inhibitory farmakologie MeSH
- interakce mezi receptory a ligandy účinky léků MeSH
- lidé MeSH
- receptory muskarinové účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 μmol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 μmol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 μmol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 μmol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime.
- MeSH
- antagonisté muskarinových receptorů farmakologie MeSH
- atropin farmakologie MeSH
- cholinesterasové inhibitory farmakologie MeSH
- diaminy farmakologie MeSH
- fysostigmin farmakologie MeSH
- interakce mezi receptory a ligandy MeSH
- krysa rodu rattus MeSH
- methacholinchlorid farmakologie MeSH
- močový měchýř účinky léků enzymologie metabolismus MeSH
- obidoxim chlorid farmakologie MeSH
- receptor muskarinový M2 antagonisté a inhibitory MeSH
- receptor muskarinový M3 antagonisté a inhibitory MeSH
- srdeční síně účinky léků enzymologie metabolismus MeSH
- svalová kontrakce účinky léků MeSH
- techniky in vitro MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nitric oxide (NO) has pivotal roles in cyclophosphamide- (CYP-) induced cystitis during which mucosal nitric oxide synthase (NOS) and muscarinic M5 receptor expressions are upregulated. In cystitis, urothelial muscarinic NO-linked effects hamper contractility. Therefore we wondered if a blockade of this axis also affects the induction of cystitis in the rat. Rats were pretreated with saline, the muscarinic receptor antagonist 4-DAMP (1 mg/kg ip), or the NOS inhibitor L-NAME (30 mg/kg ip) for five days. 60 h before the experiments the rats were treated with saline or CYP. Methacholine-, ATP-, and adenosine-evoked responses were smaller in preparations from CYP-treated rats than from saline-treated ones. Pretreatment with 4-DAMP did not change this relation, while pretreatment with L-NAME normalized the responses in the CYP-treated animals. The functional results were strengthened by the morphological observations; 4-DAMP pretreatment did not affect the parameters studied, namely, expression of muscarinic M5 receptors, P1A1 purinoceptors, mast cell distribution, or bladder wall enlargement. However, pretreatment with L-NAME attenuated the differences. Thus, the current study provides new insights into the complex mechanisms behind CYP-induced cystitis. The NO effects coupled to urothelial muscarinic receptors have a minor role in the development of cystitis. Inhibition of NOS may prevent the progression of cystitis.
- MeSH
- adenosin farmakologie MeSH
- adenosintrifosfát farmakologie MeSH
- cyklofosfamid MeSH
- cystitida farmakoterapie patologie patofyziologie MeSH
- imunohistochemie MeSH
- inhibitory enzymů farmakologie terapeutické užití MeSH
- mastocyty účinky léků patologie MeSH
- methacholinchlorid farmakologie MeSH
- močový měchýř účinky léků patologie patofyziologie MeSH
- potkani Sprague-Dawley MeSH
- purinergní receptory metabolismus MeSH
- receptory muskarinové metabolismus MeSH
- svalová kontrakce účinky léků MeSH
- synthasa oxidu dusnatého antagonisté a inhibitory metabolismus MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH