UNLABELLED: The deep sea is a massive, largely oligotrophic ecosystem, stretched over nearly 65% of the planet's surface. Deep-sea planktonic communities are almost completely dependent upon organic carbon sinking from the productive surface, forming a vital component of global biogeochemical cycles. However, despite their importance, viruses from the deep ocean remain largely unknown. Here, we describe the first complete genomes of deep-sea viruses assembled from metagenomic fosmid libraries. "Candidatus Pelagibacter" (SAR11) phage HTVC010P and Puniceispirillum phage HMO-2011 are considered the most abundant cultured marine viruses known to date. Remarkably, some of the viruses described here recruited as many reads from deep waters as these viruses do in the photic zone, and, considering the gigantic scale of the bathypelagic habitat, these genomes provide information about what could be some of the most abundant viruses in the world at large. Their role in the viral shunt in the global ocean could be very significant. Despite the challenges encountered in inferring the identity of their hosts, we identified one virus predicted to infect members of the globally distributed SAR11 cluster. We also identified a number of putative proviruses from diverse taxa, including deltaproteobacteria, bacteroidetes, SAR11, and gammaproteobacteria. Moreover, our findings also indicate that lysogeny is the preferred mode of existence for deep-sea viruses inhabiting an energy-limited environment, in sharp contrast to the predominantly lytic lifestyle of their photic-zone counterparts. Some of the viruses show a widespread distribution, supporting the tenet "everything is everywhere" for the deep-ocean virome. IMPORTANCE: The deep sea is among the largest known habitats and a critical cog in biogeochemical cycling but remains underexplored in its microbiology. Even more than is the case for its prokaryotic community, our knowledge of its viral component has remained limited by the paucity of information provided by studies dependent upon short sequence fragments. In this work, we attempt to fill this existing gap by using a combination of classical fosmid libraries with next-generation sequencing and assembly to recover long viral genomic fragments. We have sequenced ca. 6,000 fosmids from two metagenomics libraries made from prokaryotic biomass from the deep Mediterranean Sea and recovered twenty-eight complete viral genomes, all of them novel and quite distinct from all previously described viral genomes. They are preferentially found in deeper waters and are widely distributed all over the oceans. To our knowledge, this is the first report on complete and cosmopolitan viral genomes from the bathypelagic habitat.
- MeSH
- bakteriofágy klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genom virový * MeSH
- metagenomika MeSH
- mořská voda mikrobiologie MeSH
- oceány a moře * MeSH
- profágy klasifikace genetika izolace a purifikace MeSH
- sekvenční homologie MeSH
- syntenie MeSH
- virové proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- oceány a moře * MeSH
Exfoliative toxin A (ETA)-coding temperate bacteriophages are leading contributors to the toxic phenotype of impetigo strains of Staphylococcus aureus. Two distinct eta gene-positive bacteriophages isolated from S. aureus strains which recently caused massive outbreaks of pemphigus neonatorum in Czech maternity hospitals were characterized. The phages, designated φB166 and φB236, were able to transfer the eta gene into a prophageless S. aureus strain which afterwards converted into an ETA producer. Complete phage genome sequences were determined, and a comparative analysis of five designed genomic regions revealed major variances between them. They differed in the genome size, number of open reading frames, genome architecture, and virion protein patterns. Their high mutual sequence similarity was detected only in the terminal regions of the genome. When compared with the so far described eta phage genomes, noticeable differences were found. Thus, both phages represent two new lineages of as yet not characterized bacteriophages of the Siphoviridae family having impact on pathogenicity of impetigo strains of S. aureus.
- MeSH
- DNA virů chemie genetika MeSH
- DNA viry genetika izolace a purifikace MeSH
- epidemický výskyt choroby MeSH
- exfoliatiny genetika MeSH
- fylogeneze MeSH
- genom virový * MeSH
- impetigo epidemiologie mikrobiologie MeSH
- infekce spojené se zdravotní péčí epidemiologie MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- novorozenec MeSH
- otevřené čtecí rámce MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- pořadí genů MeSH
- porodnice MeSH
- přenos genů horizontální MeSH
- profágy klasifikace genetika izolace a purifikace MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie MeSH
- shluková analýza MeSH
- stafylokokové bakteriofágy klasifikace genetika izolace a purifikace MeSH
- stafylokokové infekce epidemiologie mikrobiologie MeSH
- Staphylococcus aureus izolace a purifikace virologie MeSH
- syntenie MeSH
- transdukce genetická MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Given the great biological importance and high diversity of temperate Staphylococcus aureus bacteriophages, a method is needed for the description of their genomic structure. Here we have updated a multiplex PCR strategy for the complex characterization of S. aureus phages of the family Siphoviridae. Based on the comparative genomic analysis of the available phage sequences, a multilocus PCR strategy for typing the major modules of the phage genome was designed. The genomic modules were classified on the basis of the genes for integrase (10 types), anti-repressor (five types), replication proteins polA, dnaC and dnaD (four types), dUTPase (four types), portal protein (eight types), tail appendices (four types) and endolysin (four types) corresponding to the integrase locus, lysogeny control region, and modules for DNA replication, transcription regulation, packaging, tail appendices and lysis respectively. The nine PCR assays designed for the above sequences were shown to be capable to identify the bacteriophage gene pool present both in the phage and bacterial genomes and their extensive mosaic structure. The established multiplex PCR-based multilocus diagnostic scheme is convenient for rapid and reliable phage and prophage classification and for the study of bacteriophage evolution.
- MeSH
- DNA virů genetika MeSH
- genom virový MeSH
- multilokusová sekvenční typizace MeSH
- polymerázová řetězová reakce metody MeSH
- profágy klasifikace genetika MeSH
- Siphoviridae klasifikace genetika MeSH
- srovnávací genomová hybridizace MeSH
- Staphylococcus aureus genetika virologie MeSH
- virové proteiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- DNA primery MeSH
- DNA virů analýza chemie izolace a purifikace MeSH
- genom virový MeSH
- molekulární sekvence - údaje MeSH
- profágy genetika izolace a purifikace klasifikace MeSH
- stafylokokové bakteriofágy genetika izolace a purifikace MeSH
- Staphylococcus aureus klasifikace virologie MeSH
- techniky in vitro MeSH