The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is an incretin hormone mimetic used in the treatment of diabetes. However, the effects of liraglutide on pulmonary hypertension (PH) and pulmonary endothelin (ET) system are unknown. Eight-week-old C57BL6/J mice were injected liraglutide or vehicle for 5 weeks. One week after injection, the mice were exposed to either room air (normoxia) or chronic hypoxia (10 % O(2)) for 4 weeks. The right ventricular systolic pressure (RVSP) was significantly higher in hypoxia + vehicle group than in normoxia + vehicle group. ET-1 mRNA expression in the lungs was comparable among all the groups. ET(B) mRNA and protein expression in the lungs was significantly lower in hypoxia + vehicle group than in normoxia + vehicle group. The above changes were normalized by liraglutide treatment. The expression of phospho-eNOS and phospho-AMPK proteins in the lungs was significantly higher in hypoxia + liraglutide group than in normoxia + vehicle group. We demonstrated for the first time that liraglutide effectively improved RVSP and RV hypertrophy in hypoxia-induced PH mice by activating eNOS through normalization of impaired ET(B) pathway and augmentation of AMPK pathway. Therefore, GLP-1R agonists can be promising therapeutic agents for PH.
- MeSH
- exprese genu MeSH
- hypoglykemika farmakologie terapeutické užití MeSH
- hypoxie farmakoterapie metabolismus MeSH
- liraglutid farmakologie terapeutické užití MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- plicní hypertenze farmakoterapie metabolismus MeSH
- receptor endotelinu B biosyntéza genetika MeSH
- receptor pro glukagonu podobný peptid 1 agonisté metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We examined the upregulation of ET-1/ETBR/eNOS signaling in renoprotective effect of vitamin D in kidney fibrosis model in mice using unilateral ureteral obstruction (UUO). One group was treated with intraperitoneal injection of 0.125 mg/kg of Calcitriol (UUO+VD). Vascular remodeling was quantified based on lumen area and lumen/wall area ratio (LWAR) of intrarenal arteries using Sirius Red staining. ET-1, ETBR, eNOS, CD31 and VEGF mRNA expressions were quantified using qRT-PCR. Focusing on endothelin-1 (ET-1) signaling in endothelial cells (EC), siRNA of ET-1 was performed in human umbilical vein endothelial cells (HUVEC) for reducing ET-1 expression. Then HUVECs were treated with and without 100 nM Calcitriol treatment in hypoxic and normoxic conditions to elucidate ET-1/eNOS signaling. Our in vivo study revealed vascular remodeling and renal ischemia attenuation after Calcitriol treatment. Vascular remodeling was attenuated in the UUO+VD group as shown by increasing lumen areas and LWAR in intrarenal arteries. These findings were associated with significant higher CD31 and VEGF mRNA expression compared to the UUO group. Vitamin D treatment also increased ET-1, ETBR and eNOS mRNA expressions. Our in vitro study demonstrated Calcitriol induced ET-1 and eNOS mRNA expressions upregulation in HUVEC under normoxic and hypoxic condition. Meanwhile, siRNA for ET-1 inhibited the upregulation of eNOS mRNA expression after Calcitriol treatment. Vitamin D ameliorates kidney fibrosis through attenuating vascular remodeling and ischemia with upregulating ET-1/ETBR and eNOS expression.
- MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- endotelin-1 biosyntéza MeSH
- fibróza MeSH
- ischemie farmakoterapie metabolismus MeSH
- lidé MeSH
- messenger RNA biosyntéza MeSH
- myši MeSH
- nemoci ledvin farmakoterapie metabolismus MeSH
- receptor endotelinu B biosyntéza MeSH
- remodelace cév účinky léků fyziologie MeSH
- synthasa oxidu dusnatého, typ III biosyntéza MeSH
- upregulace účinky léků fyziologie MeSH
- vitamin D farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The endothelin (ET) and prorenin/renin/prorenin receptor (PRR) systems have opposing physiological effects on collecting duct (CD) salt and water reabsorption. It is unknown if the CD ET and renin/PRR systems interact, hence we examined the effects of deleting CD renin or nephron PRR on CD ET system components. PRR knockout (KO) mice were polyuric and had markedly increased urinary ET-1 and inner medullary CD (IMCD) ET-1 mRNA. PRR KO mice had greatly increased IMCD ETA receptor mRNA and protein, while ETB mRNA and protein were decreased. Water loaded wild-type mice with similar polyuria as PRR KO mice had modestly increased urinary ET-1 excretion and inner medullary ET-1 mRNA, while inner medullary ETA and ETB mRNA or protein expression were unaffected. In contrast to PRR KO, CD prorenin/renin KO did not alter ET system components. Taken together, these results suggest that the nephron PRR is involved in regulating CD ET system expression, but this effect may be independent of CD-derived renin.
- MeSH
- dřeň ledvin metabolismus MeSH
- endotelin-1 biosyntéza genetika MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- nefrony metabolismus MeSH
- receptor endotelinu A biosyntéza genetika MeSH
- receptor endotelinu B biosyntéza genetika MeSH
- receptory buněčného povrchu nedostatek MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH