The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(NMe)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, para-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.
- MeSH
- antigeny nádorové * metabolismus MeSH
- chelátory * chemie MeSH
- integriny * metabolismus MeSH
- lidé MeSH
- lutecium * chemie MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- oligopeptidy * chemie farmakokinetika MeSH
- radiofarmaka farmakokinetika chemie terapeutické užití MeSH
- radionuklidy * chemie MeSH
- syntetická chemie okamžité shody MeSH
- teranostická nanomedicína metody MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Monoclonal antibodies are used in the therapy of various diseases. Thanks to their high specific uptake in target tissues, these antibodies can be utilized in targeted radioimmunotherapy as carriers of radioisotopes to tumors. However, important characteristics of antibodies such as target binding and stability in the organism may be affected by various structural parameters. This study has focused on the potential influence of selected chelators on radiochemical quality and in vitro receptor binding capacity in two modified monoclonal antibodies-cetuximab and panitumumab, both ligands of the epidermal growth factor receptor (EGFR). These two antibodies were each coupled with three macrocyclic chelators (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, 1,4,7-triazacyclononane-1,4,7-triacetic acid, and 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-triene-4-(S)-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid) and labeled with lutetium-177. The stability of the preparations was checked, and the cell binding to EGFR-expressing cell lines was examined. The used method led to very stable radiolabeled preparations. The results showed that binding to the target cells was not affected by the type of chelator. All three chelators may be useful for the labeling of cetuximab and panitumumab with lutetium-177 in future preclinical or clinical studies. Our study revealed previously unpublished fact that the type of chelator selected does not affect binding of EGFR-targeted antibodies labeled with lutetium-177.
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- buňky Hep G2 MeSH
- chelátory chemie farmakologie MeSH
- erbB receptory metabolismus MeSH
- humanizované monoklonální protilátky chemie farmakologie MeSH
- lidé MeSH
- lutecium chemie MeSH
- monoklonální protilátky chemie farmakologie MeSH
- radiofarmaka chemie farmakologie MeSH
- radionuklidy chemie MeSH
- vazba proteinů účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Radiolabelled monoclonal antibodies with affinity towards tumour-associated antigens may enhance the efficacy of cancer treatment with targeted radiotherapy. The humanized antibody nimotuzumab represents a promising vector to deliver radioactivity to tumours overexpressing epidermal growth factor receptor type 1 (ErbB1). We analysed the effect of radiolabelling nimotuzumab on its uptake in cancer cells and its biodistribution profile in preclinical experiments. METHODS: Nimotuzumab was labelled with (131) I by oxidative iodination and with (177) Lu using nimotuzumab conjugates with two different chelators (DTPA and DOTA) and two different spacers (p-SCN-Bn and NHS). For the receptor studies, two cell lines (HaCaT and A431) were used. Biodistribution studies were performed in male Wistar rats. RESULTS: The choice of radiolabel and the manner of its attachment to nimotuzumab had little effect on the internalization of the antibody into ErbB1-expressing cell lines. However, the type of radiolabel, the way in which it was attached to nimotuzumab and the radiolabelling procedure, significantly affected the blood clearance, liver uptake and liver persistence of radiolabelled nimotuzumab. (131) I-nimotuzumab had the longest elimination half-life and the lowest radioactivity uptake in the liver. (177) Lu-labelled nimotuzumab exhibited a shorter elimination half-life, high radioactivity and long-term retention in the liver.
- MeSH
- humanizované monoklonální protilátky chemie farmakokinetika farmakologie MeSH
- izotopové značení MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- lutecium chemie farmakokinetika MeSH
- nádorové buněčné linie MeSH
- preklinické hodnocení léčiv MeSH
- radiofarmaka chemická syntéza farmakokinetika farmakologie MeSH
- radioizotopy jodu chemie farmakokinetika MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Somatostatin analogues labelled with radiometals or radiohalogens are useful for the imaging and treatment of somatostatin receptor-containing tumours. In this study, the procedures for the radioiodination of glucose-Tyr3-octreotate (gluc-Tyr3-tate) and radiolabelling of DOTA-Tyr3-octreotate (DOTA-Tyr3-tate) with 111In, 177Lu and 125I were compared and their metabolism in rats was analyzed. The usefulness of high performance liquid chromatography (HPLC) analysis and instant thin-layer chromatography on silica gel (ITLC-SG) for both radiochemical purity determination and analysis of metabolism in urine was investigated. MATERIALS AND METHODs: For labelling with radiometals, the formation of a complex with the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) functionality of the peptide was employed. Radioiodination was performed by the chloramime-T method. The radiochemical purity of radiolabelled peptides and the analyses of rat urine were determined by HPLC and/or ITLC-SG methods. Male Wistar rats were used in the elimination studies. RESULTS: DOTA-Tyr3-tate was simply radiolabelled with radiometals with high yield and high radiochemical purity. Stopping of the reaction was a critical step for radioiodination, therefore labelling of gluc-Tyr3-tate and DOTA-Tyr3-tate with 125I was not so simple and the reaction product had to be purified by preparative HPLC analysis. Whereas 111In-DOTA-Tyr3-tate and 177Lu-DOTA-Tyr3-tate were eliminated in rat urine in a practically unchanged form, a significant proportion of metabolites was observed with radioiodinated peptides, particularly at longer time intervals. CONCLUSION: Labelling of DOTA-Tyr3-tate with radiometals is simple and the radiochemical purity of prepared compounds is very high, while iodination of the peptides demands purification of the product by preparative HPLC. The analysis of rat urine showed that excretion of radioiodinated peptides included a significant proportion of metabolites.
- MeSH
- cyklické peptidy chemie metabolismus MeSH
- financování organizované MeSH
- glukosa analogy a deriváty metabolismus MeSH
- heterocyklické sloučeniny monocyklické chemie metabolismus MeSH
- izotopové značení MeSH
- krevní proteiny metabolismus MeSH
- krysa rodu rattus MeSH
- lutecium chemie MeSH
- potkani Wistar MeSH
- radiofarmaka chemická syntéza metabolismus MeSH
- radioizotopy india chemie MeSH
- radioizotopy jodu chemie MeSH
- radionuklidy chemie MeSH
- vazba proteinů MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH