Rhomboid proteases are intramembrane enzymes that hydrolyze peptide bonds of transmembrane proteins in the lipid bilayer. They play a variety of roles in key biological events and are linked to several disease states. Over the last decade a great deal of structural and functional knowledge has been generated on this fascinating class of proteases. Both structural and kinetic analyses require milligram amounts of protein, which may be challenging for membrane proteins such as rhomboids. Here, we present a detailed protocol for optimization of expression and purification of three rhomboid proteases from Escherichia coli (ecGlpG), Haemophilus influenzae (hiGlpG), and Providencia stuartii (AarA). We discuss the optimization of expression conditions, such as concentration of inducing agent, induction time, and temperature, as well as purification protocol with precise details for each step. The provided protocol yields 1-2.5mg of rhomboid enzyme per liter of bacterial culture and can assist in structural and functional studies of intramembrane proteases.
- MeSH
- DNA vazebné proteiny biosyntéza chemie genetika izolace a purifikace MeSH
- endopeptidasy biosyntéza chemie genetika izolace a purifikace MeSH
- Escherichia coli enzymologie MeSH
- Haemophilus influenzae enzymologie MeSH
- kinetika MeSH
- lipidové dvojvrstvy chemie MeSH
- membránové proteiny biosyntéza chemie genetika izolace a purifikace MeSH
- molekulární biologie metody MeSH
- proteiny z Escherichia coli biosyntéza chemie genetika izolace a purifikace MeSH
- Providencia enzymologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
Rhomboids are ubiquitous intramembrane serine proteases that are involved in various signaling pathways. This fascinating class of proteases harbors an active site buried within the lipid milieu. High-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed the catalytic mechanism for rhomboid-mediated proteolysis; however, a quantitative characterization was lacking. Assessing an enzyme's catalytic parameters is important for understanding the details of its proteolytic reaction and regulatory mechanisms. To assay rhomboid protease activity, many challenges exist such as the lipid environment and lack of known substrates. Here, we summarize various enzymatic assays developed over the last decade to study rhomboid protease activity. We present detailed protocols for gel-shift and FRET-based assays, and calculation of KM and Vmax to measure catalytic parameters, using detergent solubilized rhomboids with TatA, the only known substrate for bacterial rhomboids, and the model substrate fluorescently labeled casein.
- MeSH
- buněčná membrána enzymologie MeSH
- DNA vazebné proteiny chemie izolace a purifikace metabolismus MeSH
- endopeptidasy chemie izolace a purifikace metabolismus MeSH
- enzymatické testy metody MeSH
- Escherichia coli enzymologie MeSH
- katalytická doména MeSH
- membránové proteiny chemie izolace a purifikace metabolismus MeSH
- proteiny z Escherichia coli chemie izolace a purifikace metabolismus MeSH
- proteolýza * MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
WrbA is a novel multimeric flavodoxin-like protein of unknown function. A recent high-resolution X-ray crystal structure of E. coli WrbA holoprotein revealed a methionine sulfoxide residue with full occupancy in the FMN-binding site, a finding that was confirmed by mass spectrometry. In an effort to evaluate whether methionine sulfoxide may have a role in WrbA function, the present analyses were undertaken using molecular dynamics simulations in combination with further mass spectrometry of the protein. Methionine sulfoxide formation upon reconstitution of purified apoWrbA with oxidized FMN is fast as judged by kinetic mass spectrometry, being complete in ∼5 h and resulting in complete conversion at the active-site methionine with minor extents of conversion at heterogeneous second sites. Analysis of methionine oxidation states during purification of holoWrbA from bacterial cells reveals that methionine is not oxidized prior to reconstitution, indicating that methionine sulfoxide is unlikely to be relevant to the function of WrbA in vivo. Although the simulation results, the first reported for WrbA, led to no hypotheses about the role of methionine sulfoxide that could be tested experimentally, they elucidated the origins of the two major differences between apo- and holoWrbA crystal structures, an alteration of inter-subunit distance and a rotational shift within the tetrameric assembly.
- MeSH
- apoproteiny chemie izolace a purifikace metabolismus MeSH
- flavinmononukleotid chemie metabolismus MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- kinetika MeSH
- konformace proteinů MeSH
- methionin analogy a deriváty chemie metabolismus MeSH
- oxidace-redukce MeSH
- proteiny z Escherichia coli chemie izolace a purifikace metabolismus MeSH
- represorové proteiny chemie izolace a purifikace metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination.
- MeSH
- antibakteriální látky farmakologie MeSH
- Enterobacteriaceae genetika izolace a purifikace MeSH
- enterobakteriální infekce epidemiologie mikrobiologie veterinární MeSH
- feces mikrobiologie MeSH
- fluorochinolony farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- nemoci ptáků epidemiologie mikrobiologie MeSH
- plazmidy klasifikace genetika izolace a purifikace MeSH
- polymerázová řetězová reakce veterinární MeSH
- protein - isoformy klasifikace genetika izolace a purifikace MeSH
- proteiny z Escherichia coli klasifikace genetika izolace a purifikace MeSH
- vrány mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Penicillin G acylase of Escherichia coli (PGAEc) is a commercially valuable enzyme for which efficient bacterial expression systems have been developed. The enzyme is used as a catalyst for the hydrolytic production of beta-lactam nuclei or for the synthesis of semi-synthetic penicillins such as ampicillin, amoxicillin and cephalexin. To become a mature, periplasmic enzyme, the inactive prepropeptide of PGA has to undergo complex processing that begins in the cytoplasm (autocatalytic cleavage), continues at crossing the cytoplasmic membrane (signal sequence removing), and it is completed in the periplasm. Since there are reports on impressive cytosolic expression of bacterial proteins in Pichia, we have cloned the leader-less gene encoding PGAEc in this host and studied yeast production capacity and enzyme authenticity. RESULTS: Leader-less pga gene encoding PGAEcunder the control of AOX1 promoter was cloned in Pichia pastoris X-33. The intracellular overproduction of heterologous PGAEc(hPGAEc) was evaluated in a stirred 10 litre bioreactor in high-cell density, fed batch cultures using different profiles of transient phases. Under optimal conditions, the average volumetric activity of 25900 U l-1 was reached. The hPGAEc was purified, characterized and compared with the wild-type PGAEc. The alpha-subunit of the hPGAEc formed in the cytosol was processed aberrantly resulting in two forms with C- terminuses extended to the spacer peptide. The enzyme exhibited modified traits: the activity of the purified enzyme was reduced to 49%, the ratios of hydrolytic activities with cephalexin, phenylacetamide or 6-nitro-3-phenylacetylamidobenzoic acid (NIPAB) to penicillin G increased and the enzyme showed a better synthesis/hydrolysis ratio for the synthesis of cephalexin. CONCLUSIONS: Presented results provide useful data regarding fermentation strategy, intracellular biosynthetic potential, and consequences of the heterologous expression of PGAEc in P. pastoris X-33. Aberrant processing of the precursor of PGAEc in the cytosol yielded the mature enzyme with modified traits.
- MeSH
- bioreaktory MeSH
- Escherichia coli enzymologie genetika MeSH
- fermentace MeSH
- klonování DNA MeSH
- penicilinamidasa biosyntéza genetika izolace a purifikace MeSH
- Pichia genetika metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- proteiny z Escherichia coli biosyntéza genetika izolace a purifikace MeSH
- průmyslová mikrobiologie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
EcoR124I is a multicomplex enzyme belonging to the type I restriction-modification system from Escherichia coli. Although EcoR124I has been extensively characterized biochemically, there is no direct structural information available about particular subunits. HsdR is a motor subunit that is responsible for ATP hydrolysis, DNA translocation and cleavage of the DNA substrate recognized by the complex. Recombinant HsdR subunit was crystallized using the sitting-drop vapour-diffusion method. Crystals belong to the primitive monoclinic space group, with unit-cell parameters a = 85.75, b = 124.71, c = 128.37 A, beta = 108.14 degrees. Native data were collected to 2.6 A resolution at the X12 beamline of EMBL Hamburg.