N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•-). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO- from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•- in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.
- MeSH
- acetylcystein farmakologie MeSH
- HL-60 buňky MeSH
- katalasa genetika MeSH
- leukemie farmakoterapie genetika metabolismus MeSH
- lidé MeSH
- NADPH-oxidasa 2 genetika MeSH
- oxidační stres účinky léků MeSH
- peroxidasa genetika MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- stanovení celkové genové exprese MeSH
- superoxiddismutasa genetika MeSH
- U937 buňky MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1β by neutrophil granulocytes. In this study, we show that in addition to IL-1β, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1β levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- buněčné linie MeSH
- cytoskeletální proteiny genetika metabolismus MeSH
- interleukin-1beta imunologie metabolismus MeSH
- kosti a kostní tkáň imunologie patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- myši transgenní MeSH
- myši MeSH
- NADPH-oxidasa 2 genetika metabolismus MeSH
- neutrofily imunologie metabolismus MeSH
- osteomyelitida genetika imunologie patologie MeSH
- primární buněčná kultura MeSH
- signální transdukce genetika imunologie MeSH
- superoxidy imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
P38alpha kinase plays an important role in the regulation of both cell stress response and cell fate. In this study, we report that p38alpha kinase-deficient embryonic stem cells exhibit a higher production of reactive oxygen species (ROS) in contrast to their wild-type counterpart. Analysis of the expressions of NADPH oxidases (NOXs) and dual oxidases, crucial enzymes involved in intracellular ROS formation, shows NOX2/gp91phox is over-expressed in p38alpha deficient cells. The particular increase in superoxide formation was confirmed by the specific detection of hydroethidine derivate 2-hydroxyethidium. ROS formation decreased when the level of NOX2 was silenced by siRNA in p38alpha deficient cells. These data suggest the importance of p38alpha kinase in the regulation of ROS metabolism in embryonic stem cells and the significance of the observed phenomena of cancer cell-like phenotypes, which is discussed.
- MeSH
- buněčná diferenciace fyziologie MeSH
- genový knockdown MeSH
- genový knockout MeSH
- kultivované buňky MeSH
- membránový potenciál mitochondrií fyziologie MeSH
- mitochondrie metabolismus MeSH
- mitogenem aktivovaná proteinkinasa 14 genetika metabolismus MeSH
- myší embryonální kmenové buňky metabolismus MeSH
- myši MeSH
- NADPH-oxidasa 2 genetika metabolismus MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIM: Increased homocysteine (Hcy) is associated with coronary artery disease (CAD). Hcy increases reactive oxygen species (ROS) via NADPH oxidases (Nox), reducing acetylcholine-mediated vasorelaxation. We aimed to determine if putative Nox2 inhibitors prevent Hcy-impaired acetylcholine-mediated vasorelaxation. METHODS AND RESULTS: New Zealand White rabbit and wild-type (C57BL/6) and Nox2-/- (NOX) mice aortic rings were mounted in organ baths. Rabbit rings were incubated with either apocynin (10 μM), gp91ds-tat (GP, 1 μM) or PhoxI2 (1 μM) and mice rings GP (1 μM) only. Some rabbit rings were incubated with 3 mM Hcy, before pre-contraction, followed by dose-response relaxation to acetylcholine (ACh; 0.01μM-10μM). In rabbit rings treated with Hcy and GP, O2‾ donor pyrogallol (1 μM) or Akt activator SC79 (1 μM) was added 5 min before ACh. Mice rings were used to compare Nox2 deletion to normal acetylcholine-mediated relaxation. In rabbits, Hcy reduced acetylcholine-mediated relaxation vs. control (p < 0.0001). Treatment + Hcy reduced relaxation compared with treatment alone (p < 0.0001). Pyrogallol and SC79 reversed the response of GP + Hcy (p = 0.0001). In mice, Nox2 deletion reduced acetylcholine-mediated vasorelaxation. Rabbit tissue analysis revealed that Hcy reduced eNOS phosphorylation at Thr495 and increased eNOS phosphorylation at Ser1177; no further alteration at Thr495 was observed with GP. In contrast, GP prevented increased phosphorylation at Ser1177. CONCLUSIONS: Apocynin, GP and PhoxI2 worsens acetylcholine-mediated vascular relaxation in rabbit aorta, which is supported by results from mouse Nox2 deletion data. These inhibitors worsen Hcy-induced vascular dysfunction, suggesting that current putative Nox2 inhibitors might not be useful in treating HHcy.
- MeSH
- acetofenony farmakologie MeSH
- acetylcholin farmakologie MeSH
- aorta účinky léků enzymologie MeSH
- fosforylace MeSH
- glykoproteiny farmakologie MeSH
- homocystein farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- králíci MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- NADPH-oxidasa 2 antagonisté a inhibitory genetika metabolismus MeSH
- serin MeSH
- synthasa oxidu dusnatého, typ III metabolismus MeSH
- techniky in vitro MeSH
- threonin MeSH
- vazodilatace účinky léků MeSH
- vazodilatancia farmakologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This short review article summarizes what is known clinically and biochemically about the seven human NADPH oxidases. Emphasis is put on the connection between mutations in the catalytic and regulatory subunits of Nox2, the phagocyte defense enzyme, with syndromes like chronic granulomatous disease, as well as a number of chronic inflammatory diseases. These arise paradoxically from a lack of reactive oxygen species production needed as second messengers for immune regulation. Both Nox2 and the six other human NADPH oxidases display signaling functions in addition to the functions of these enzymes in specialized biochemical reactions, for instance, synthesis of the hormone thyroxine. NADPH oxidases are also needed by Saccharomyces cerevisiae cells for the regulation of the actin cytoskeleton in times of stress or developmental changes, such as pseudohyphae formation. The article shows that in certain cancer cells Nox4 is also involved in the re-structuring of the actin cytoskeleton, which is required for cell mobility and therefore for metastasis.
- MeSH
- eukaryotické buňky * MeSH
- lidé MeSH
- NADPH-oxidasa 2 MeSH
- NADPH-oxidasa 4 MeSH
- NADPH-oxidasy * fyziologie MeSH
- reaktivní formy kyslíku MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH