"LO 1506" Dotaz Zobrazit nápovědu
Despite the wide choice of commercial heart valve prostheses, cryopreserved semilunar allograft heart valves (C-AHV) are required, and successfully transplanted in selected groups of patients. The expiration limit (EL) criteria have not been defined yet. Most Tissue Establishments (TE) use the EL of 5 years. From physiological, functional, and surgical point of view, the morphology and mechanical properties of aortic and pulmonary roots represent basic features limiting the EL of C-AHV. The aim of this work was to review methods of AHV tissue structural analysis and mechanical testing from the perspective of suitability for EL validation studies. Microscopic structure analysis of great arterial wall and semilunar leaflets tissue should clearly demonstrate cells as well as the extracellular matrix components by highly reproducible and specific histological staining procedures. Quantitative morphometry using stereological grids has proved to be effective, as the exact statistics was feasible. From mechanical testing methods, tensile test was the most suitable. Young's moduli of elasticity, ultimate stress and strain were shown to represent most important AHV tissue mechanical characteristics, suitable for exact statistical analysis. C-AHV are prepared by many different protocols, so as each TE has to work out own EL for C-AHV.
- MeSH
- alografty MeSH
- aorta MeSH
- aortální chlopeň * chirurgie MeSH
- kryoprezervace * MeSH
- lidé MeSH
- modul pružnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Decellularized tissue is an important source for biological tissue engineering. Evaluation of the quality of decellularized tissue is performed using scanned images of hematoxylin-eosin stained (H&E) tissue sections and is usually dependent on the observer. The first step in creating a tool for the assessment of the quality of the liver scaffold without observer bias is the automatic segmentation of the whole slide image into three classes: the background, intralobular area, and extralobular area. Such segmentation enables to perform the texture analysis in the intralobular area of the liver scaffold, which is crucial part in the recellularization procedure. Existing semi-automatic methods for general segmentation (i.e., thresholding, watershed, etc.) do not meet the quality requirements. Moreover, there are no methods available to solve this task automatically. Given the low amount of training data, we proposed a two-stage method. The first stage is based on classification of simple hand-crafted descriptors of the pixels and their neighborhoods. This method is trained on partially annotated data. Its outputs are used for training of the second-stage approach, which is based on a convolutional neural network (CNN). Our architecture inspired by U-Net reaches very promising results, despite a very low amount of the training data. We provide qualitative and quantitative data for both stages. With the best training setup, we reach 90.70% recognition accuracy.
- MeSH
- játra * diagnostické zobrazování MeSH
- neuronové sítě MeSH
- počítačové zpracování obrazu * MeSH
- sémantika * MeSH
- Publikační typ
- dopisy MeSH
The geometrical representation of muscles in computational models of the musculoskeletal system typically consists of a series of line segments. These muscle anatomies are based on measurements from a limited number of cadaveric studies that recently have been used as atlases for creating subject-specific models from medical images, so potentially restricting the options for personalisation and assessment of muscle geometrical models. To overcome this methodological limitation, we propose a novel, completely automated technique that, from a surface geometry of a skeletal muscle and its attachment areas, can generate an arbitrary number of lines of action (fibres) composed by a user-defined number of straight-line segments. These fibres can be included in standard musculoskeletal models and used in biomechanical simulations. This methodology was applied to the surfaces of four muscles surrounding the hip joint (iliacus, psoas, gluteus maximus and gluteus medius), segmented on magnetic resonance imaging scans from a cadaveric dataset, for which highly discretised muscle representations were created and used to simulate functional tasks. The fibres' moment arms were validated against measurements and models of the same muscles from the literature with promising outcomes. The proposed approach is expected to improve the anatomical representation of skeletal muscles in personalised biomechanical models and finite element applications.
- MeSH
- biologické modely * MeSH
- biomechanika MeSH
- kosterní svaly * diagnostické zobrazování fyziologie MeSH
- kyčelní kloub * diagnostické zobrazování fyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mrtvola MeSH
- počítačová rentgenová tomografie MeSH
- počítačové modelování podle konkrétního pacienta * MeSH
- senioři nad 80 let MeSH
- Check Tag
- lidé MeSH
- senioři nad 80 let MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The aortic and pulmonary allograft heart valves (AHV) are used in the cardiac surgery for replacing the impaired semilunar valves. They are harvested from donor hearts and cryostored in tissue banks. The expiration period was set to 5 years arbitrarily. We hypothesized that their mechanical and structural properties do not deteriorate after this period. A total of 64 human AHV (31 aortic and 33 pulmonary) of different length of cryopreservation (fresh, 0-5, 5-10, over 10 years) were sampled to different tissue strips (artery, leaflet, ventriculo-arterial junction) and tested by tensile test with loading velocity 10 mm/min until tissue rupture. Neighbouring regions of tissue were processed histologically and evaluated for elastin and collagen area fraction. The results were evaluated statistically. In aortic AHV, the physical deformation response of wall samples to stress did not changed significantly neither during the process of cryopreservation nor during the first 10 years of storage. In pulmonary AHV, the ultimate strain dropped after 5 years of cryopreservation indicating that pulmonary artery was significantly less deformable at the time of rupture. On the other hand, the ultimate stress was equal during the first 10 years of cryostorage. The changes in collagen and elastin amount in the tissue samples were not associated with mechanical impairment. Neither elasticity, stiffness and solidity nor morphology of aortic and pulmonary AHV did not change reasonably with cryopreservation and in the first 10 years of cryostorage. This evidence suggests that the expiration period might be extended in the future.
- MeSH
- aortální chlopeň transplantace MeSH
- dospělí MeSH
- elastin analýza MeSH
- homologní transplantace MeSH
- kolagen analýza MeSH
- kryoprezervace metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- plicní chlopeň transplantace MeSH
- tkáňové banky * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The paper deals with modeling the liver perfusion intended to improve quantitative analysis of the tissue scans provided by the contrast-enhanced computed tomography (CT). For this purpose, we developed a model of dynamic transport of the contrast fluid through the hierarchies of the perfusion trees. Conceptually, computed time-space distributions of the so-called tissue density can be compared with the measured data obtained from CT; such a modeling feedback can be used for model parameter identification. The blood flow is characterized at several scales for which different models are used. Flows in upper hierarchies represented by larger branching vessels are described using simple 1D models based on the Bernoulli equation extended by correction terms to respect the local pressure losses. To describe flows in smaller vessels and in the tissue parenchyma, we propose a 3D continuum model of porous medium defined in terms of hierarchically matched compartments characterized by hydraulic permeabilities. The 1D models corresponding to the portal and hepatic veins are coupled with the 3D model through point sources, or sinks. The contrast fluid saturation is governed by transport equations adapted for the 1D and 3D flow models. The complex perfusion model has been implemented using the finite element and finite volume methods. We report numerical examples computed for anatomically relevant geometries of the liver organ and of the principal vascular trees. The simulated tissue density corresponding to the CT examination output reflects a pathology modeled as a localized permeability deficiency.
- MeSH
- analýza metodou konečných prvků MeSH
- biologické modely MeSH
- jaterní oběh * fyziologie MeSH
- játra krevní zásobení diagnostické zobrazování MeSH
- kontrastní látky farmakokinetika MeSH
- lidé MeSH
- matematické pojmy MeSH
- počítačová rentgenová tomografie statistika a číselné údaje MeSH
- počítačová simulace MeSH
- poréznost MeSH
- vylepšení rentgenového snímku metody MeSH
- zobrazování trojrozměrné statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH