"VEGA 1/0380/18"
Dotaz
Zobrazit nápovědu
BACKGROUND: Single nucleotide polymorphisms can create a genetic microenvironment in some tumors that affects the course of treatment, resistance, etc. Whether single nucleotide polymorphisms have an impact on gastrointestinal stromal tumor (GIST) development and disease progression is not yet accurately verified. KIT SNPM541L in exon 10 correlates with a worse prognosis of many cancers. The impact of KIT SNPM541L in GISTs is relatively unknown and, therefore, its analyses could have potential in patient therapy and could provide more detailed information on tumor character, clinical presentation, or tumor behavior in treatment. AIM: The aim of the study was the analysis of the biological and clinical significance of the KIT SNPM541L polymorphism in exon 10. MATERIALS AND METHODS: Paraffin sample tissues were obtained from the National GIST Register in Martin. Retrospective samples from 177 GIST patients were divided into several groups. Detection of SNPM541L was performed by Sanger sequencing. Statisitical analyses were performed to determine the prevalence of KIT SNPM541L in the Slovak GIST cohort, to search for correlation between c-KIT status and clinicopathological, molecular and biological data. RESULTS: Overall, 29 samples out of 177 showed KIT SNPM541L polymorphism. CONCLUSION: Our results do not support the association between KIT SNPM541L and increased risk of relapse in localized primary GISTs. Additionally, we found a positive correlation between KIT SNPM541L occurrence and earlier onset of relapse in PDGFRa and WT subgroup of GISTs.
- MeSH
- dospělí MeSH
- gastrointestinální nádory epidemiologie genetika patologie MeSH
- gastrointestinální stromální tumory epidemiologie genetika patologie MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé středního věku MeSH
- lidé MeSH
- míra přežití MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nádorové biomarkery genetika MeSH
- následné studie MeSH
- prognóza MeSH
- protoonkogenní proteiny c-kit genetika MeSH
- retrospektivní studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
The development of the new technologies such as the next-generation sequencing (NGS) makes more accessible the diagnosis of genetically heterogeneous diseases such as Lynch syndrome (LS). LS is one of the most common hereditary form of colorectal cancer. This autosomal dominant inherited disorder is caused by deleterious germline mutations in one of the mismatch repair (MMR) genes - MLH1, MSH2, MSH6 or PMS2, or the deletion in the EPCAM gene. These mutations eventually result in microsatellite instability (MSI), which can be easily tested in tumor tissue. According to the actual recommendations, all patients with CRC that are suspect to have LS, should be offered the MSI testing. When the MSI is positive, these patients should be recommended to genetic counseling. Here we report a pilot study about the application of NGS in the LS diagnosis in patients considered to have sporadic colorectal cancer. The inclusion criteria for the NGS testing were MSI positivity, BRAF V600E and MHL1 methylation negativity. We have used 5 gene amplicon based massive parallel sequencing on MiSeq platform. In one patient, we have identified a new pathogenic mutation in the exon 4 of the MSH6 gene that was previously not described in ClinVar, Human Gene Mutation Database, Ensembl and InSight databases. This mutation was confirmed by the Sanger method. We have shown that the implementation of new criteria for colorectal patients screening are important in clinical praxis and the NGS gene panel testing is suitable for routine laboratory settings.
- MeSH
- dědičné nepolypózní kolorektální nádory diagnóza genetika MeSH
- lidé MeSH
- mikrosatelitní nestabilita MeSH
- oprava chybného párování bází DNA MeSH
- pilotní projekty MeSH
- vysoce účinné nukleotidové sekvenování * MeSH
- zárodečné mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Slovenská republika MeSH