Atomistic simulation
Dotaz
Zobrazit nápovědu
Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs). They are small amino acids or derivatives found in the outermost layer of the skin, the stratum corneum (SC). They are often claimed to be highly efficient humectants, increasing the water content to maintain the fluidity of the skin. However, alternative mechanisms have been proposed, suggesting that NMFs themselves may act as lipid mobility amplifiers. This work aims at investigating the role of three NMFs, namely, urea (URE), glycerol (GLY), and urocanic acid/urocanate (UCA/UCO) in SC in silico models, considering two different levels of humidity. Molecular dynamic simulations showed an increase in the diffusion of different lipid components, mainly free fatty acids (FFAs) and ceramide acyl chain moieties, in the presence of either high water content or NMFs. The membrane properties were modified, as seen by an increased thickness and greater lateral stiffness. All NMFs exhibited a similar impact, whereas UCA revealed slight differences according to its charged state. By studying NMF-water intermolecular interactions, we highlighted the role of NMF as a regulator of membrane perturbations while ensuring membrane fluidity. This role allows NMFs to prevent destabilization of the skin membrane in the presence of high water content. This study, performed at an atomistic resolution, highlighted a strong H-bond network between lipids involving mainly ceramides but also all other components. This network can be modified in the presence of a high water concentration or NMFs, resulting in modifications of membrane properties, rationalizing hydration effects.
- MeSH
- glycerol * chemie MeSH
- kůže * chemie metabolismus MeSH
- kyselina urokanová chemie metabolismus MeSH
- lidé MeSH
- močovina * chemie MeSH
- simulace molekulární dynamiky * MeSH
- voda * chemie MeSH
- vodíková vazba * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca2+ associated with a higher rate of Ca2+ dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy). Cardiomyopathy-linked mutations primarily affect Ca2+ regulation or the PKA-dependent modulatory system, such that Ca2+-sensitivity becomes independent of phosphorylation level (uncoupling) and this could be sufficient to induce cardiomyopathy. A drug that could restore the phosphorylation-dependent modulation of Ca2+-sensitivity could have potential for treatment of these pathologies. We have found that a number of small molecules, including silybin B, resveratrol and EGCG, can restore coupling in single filament assays. METHODS: We did molecular dynamics simulations (5x1500ns for each condition) of the unphosphorylated and phosphorylated cardiac troponin core with the G159D DCM mutation in the presence of the 5 ligands and analysed the effects on several dynamic parameters. We also studied the effect of the ligands on the contractility of cardiac muscle myocytes with ACTC E99K and TNNT2 R92Q mutations in response to dobutamine. RESULTS: Silybin B, EGCG and resveratrol restored the phosphorylation-induced change in molecular dynamics to wild-type values, whilst silybin A, an inactive isomer of silybin B, and Epicatechin gallate, an EGCG analogue that does not recouple, did not. We analysed the atomic-level changes induced by ligand binding to explain recoupling. Mutations ACTC E99K and TNNT2 R92Q blunt the increased relaxation speed response to β1 adrenergic stimulation of cardiac myocytes and we found that resveratrol, EGCG and silybin B could restore the β1 adrenergic response, whereas silybin A did not. DISCUSSION: The uncoupling phenomenon caused by cardiomyopathy-related mutations and the ability of small molecules to restore coupling in vitro and lusitropy in myocytes is observed at the cellular, molecular and atomistic levels therefore, restoring lusitropy is a suitable target for treatment. Further research on compounds that restore lusitropy is thus indicated as treatments for genetic cardiomyopathies. Further molecular dynamics simulations could define the specific properties needed for recoupling and allow for the prediction and design of potential new drugs.
- Publikační typ
- časopisecké články MeSH
There is increasing pharmaceutical interest in deep eutectic solvents not only as a green alternative to organic solvents in drug manufacturing, but also as liquid formulation for drug delivery. The present work introduces a hydrophobic deep eutectic solvent (HDES) to the field of lipid-based formulations (LBF). Phase behavior of a mixture with 2:1 M ratio of decanoic- to dodecanoic acid was studied experimentally and described by thermodynamic modelling. Venetoclax was selected as a hydrophobic model drug and studied by atomistic molecular dynamics simulations of the mixtures. As a result, valuable molecular insights were gained into the interaction networks between the different components. Moreover, experimentally the HDES showed greatly enhanced drug solubilization compared to conventional glyceride-based vehicles, but aqueous dispersion behavior was limited. Hence surfactants were studied for their ability to improve aqueous dispersion and addition of Tween 80 resulted in lowest droplet sizes and high in vitro drug release. In conclusion, the combination of HDES with surfactant(s) provides a novel LBF with high pharmaceutical potential. However, the components must be finely balanced to keep the integrity of the solubilizing HDES, while enabling sufficient dispersion and drug release.
- MeSH
- farmaceutická chemie metody MeSH
- hydrofobní a hydrofilní interakce * MeSH
- kyseliny laurové chemie MeSH
- lipidy * chemie MeSH
- oleje chemie MeSH
- polysorbáty chemie MeSH
- povrchově aktivní látky * chemie MeSH
- příprava léků * metody MeSH
- rozpouštědla * chemie MeSH
- rozpustnost * MeSH
- simulace molekulární dynamiky * MeSH
- sulfonamidy chemie aplikace a dávkování MeSH
- uvolňování léčiv * MeSH
- Publikační typ
- časopisecké články MeSH
Over the past decade, there has been a significant rise in the use of vaping devices, particularly among adolescents, raising concerns for effects on respiratory health. Pressingly, many recent vaping-related lung injuries are unexplained by current knowledge, and the overall implications of vaping for respiratory health are poorly understood. This study investigates the effect of hydrophobic vaping liquid chemicals on the pulmonary surfactant biophysical function. We focus on the commonly used flavoring benzaldehyde and its vaping byproduct, benzaldehyde propylene glycol acetal. The study involves rigorous testing of the surfactant biophysical function in Langmuir trough and constrained sessile drop surfactometer experiments with both protein-free synthetic surfactant and hydrophobic protein-containing clinical surfactant models. The study reveals that exposure to these vaping chemicals significantly interferes with the synthetic and clinical surfactant biophysical function. Further atomistic simulations reveal preferential interactions with SP-B and SP-C surfactant proteins. Additionally, data show surfactant lipid-vaping chemical interactions and suggest significant transfer of vaping chemicals to the experimental subphase, indicating a toxicological mechanism for the alveolar epithelium. Our study, therefore, reveals novel mechanisms for the inhalational toxicity of vaping. This highlights the need to reassess the safety of vaping liquids for respiratory health, particularly the use of aldehyde chemicals as vaping flavorings.
Atomic characterization of large nonfibrillar aggregates of amyloid polypeptides cannot be determined by experimental means. Starting from β-rich aggregates of Y and elongated topologies predicted by coarse-grained simulations and consisting of more than 100 Aβ16-22 peptides, we performed atomistic molecular dynamics (MD), replica exchange with solute scaling (REST2), and umbrella sampling simulations using the CHARMM36m force field in explicit solvent. Here, we explored the dynamics within 3 μs, the free energy landscape, and the potential of mean force associated with either the unbinding of one single peptide in different configurations within the aggregate or fragmentation events of a large number of peptides. Within the time scale of MD and REST2, we find that the aggregates experience slow global conformational plasticity, and remain essentially random coil though we observe slow beta-strand structuring with a dominance of antiparallel beta-sheets over parallel beta-sheets. Enhanced REST2 simulation is able to capture fragmentation events, and the free energy of fragmentation of a large block of peptides is found to be similar to the free energy associated with fibril depolymerization by one chain for longer Aβ sequences.
FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.
The plasma membrane, as a highly complex cell organelle, serves as a crucial platform for a multitude of cellular processes. Its collective biophysical properties are largely determined by the structural diversity of the different lipid species it accommodates. Therefore, a detailed investigation of biophysical properties of the plasma membrane is of utmost importance for a comprehensive understanding of biological processes occurring therein. During the past two decades, several environment-sensitive probes have been developed and become popular tools to investigate membrane properties. Although these probes are assumed to report on membrane order in similar ways, their individual mechanisms remain to be elucidated. In this study, using model membrane systems, we characterized the probes Pro12A, NR12S and NR12A in depth and examined their sensitivity to parameters with potential biological implications, such as the degree of lipid saturation, double bond position and configuration (cis versus trans), phospholipid headgroup and cholesterol content. Applying spectral imaging together with atomistic molecular dynamics simulations and time-dependent fluorescent shift analyses, we unravelled individual sensitivities of these probes to different biophysical properties, their distinct localizations and specific relaxation processes in membranes. Overall, Pro12A, NR12S and NR12A serve together as a toolbox with a wide range of applications allowing to select the most appropriate probe for each specific research question.
Recognition of single-stranded RNA (ssRNA) by RNA recognition motif (RRM) domains is an important class of protein-RNA interactions. Many such complexes were characterized using nuclear magnetic resonance (NMR) and/or X-ray crystallography techniques, revealing ensemble-averaged pictures of the bound states. However, it is becoming widely accepted that better understanding of protein-RNA interactions would be obtained from ensemble descriptions. Indeed, earlier molecular dynamics simulations of bound states indicated visible dynamics at the RNA-RRM interfaces. Here, we report the first atomistic simulation study of spontaneous binding of short RNA sequences to RRM domains of HuR and SRSF1 proteins. Using a millisecond-scale aggregate ensemble of unbiased simulations, we were able to observe a few dozen binding events. HuR RRM3 utilizes a pre-binding state to navigate the RNA sequence to its partially disordered bound state and then to dynamically scan its different binding registers. SRSF1 RRM2 binding is more straightforward but still multiple-pathway. The present study necessitated development of a goal-specific force field modification, scaling down the intramolecular van der Waals interactions of the RNA which also improves description of the RNA-RRM bound state. Our study opens up a new avenue for large-scale atomistic investigations of binding landscapes of protein-RNA complexes, and future perspectives of such research are discussed.
Recent advances in RNA-based medicine have provided new opportunities for the global current challenge, i.e., the COVID-19 pandemic. Novel vaccines are based on a messenger RNA (mRNA) motif with a lipid nanoparticle (LNP) vector, consisting of high content of unique pH-sensitive ionizable lipids (ILs). Here we provide molecular insights into the role of the ILs and lipid mixtures used in current mRNA vaccines. We observed that the lipid mixtures adopted a nonlamellar organization, with ILs separating into a very disordered, pH-sensitive phase. We describe structural differences of the two ILs leading to their different congregation, with implications for the vaccine stability. Finally, as RNA interacts preferentially with IL-rich phases located at the regions with high curvature of lipid phase, local changes in RNA flexibility and base pairing are induced by lipids. A proper atomistic understanding of RNA-lipid interactions may enable rational tailoring of LNP composition for efficient RNA delivery.
- MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie MeSH
- lipidy chemie MeSH
- messenger RNA chemie MeSH
- molekulární modely MeSH
- simulace molekulární dynamiky MeSH
- vakcíny proti COVID-19 chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging. METHODS: We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields. RESULTS: The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted. CONCLUSIONS: The CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues. GENERAL SIGNIFICANCE: Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.
- MeSH
- chromozomální proteiny, nehistonové chemie metabolismus MeSH
- histokompatibilní antigeny metabolismus MeSH
- histonlysin-N-methyltransferasa metabolismus MeSH
- histony metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- lysin metabolismus MeSH
- metylace MeSH
- posttranslační úpravy proteinů MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH