Copepod
Dotaz
Zobrazit nápovědu
The larval development of the nematode Contracaecum rudolphii (Rudolphi, 1819), a common parasite of the proventriculus of cormorants, was experimentally studied. Within the eggs cultivated in freshwater under laboratory temperatures of 20–22 °C, the developing larva undergoes two moults on days 4–5, attaining the third larval stage. Most of the ensheathed third-stage larvae, 291–457 µm long, hatch spontaneously from egg shells on days 5–6. Experiments have indicated that hatched ensheated third-stage larvae and those still inside egg capsules are already infective to copepods and fishes, which both can be considered paratenic (metaparatenic) hosts. Five copepod species, Acanthocyclops vernalis, Cyclops strenuus, Ectocyclops phaleratus, Eucyclops serrulatus and Megacyclops viridis, the isopod Asellus aquaticus and small carps Cyprinus carpio were infected by feeding them these larvae. In addition, 9 fish species, Alburnoides bipunctatus, Anguilla anguilla, Barbatula barbatula, Cyprinus carpio, Gobio gobio, Perca fluviatilis, Phoxinus phoxinus, Poecilia reticulata and Tinca tinca, were successfully infected by feeding them copepods previously infected with C. rudolphii third-stage larvae. In fishes, larvae from copepods penetrate through the intestinal wall to the body cavity, where, in a few weeks, they become encapsulated; the larvae substantially grow in fish, attaining the body length up to 4.87 mm. In carp fry, the nematode third-stage larvae survived for about 15 months (up to 18 months in fish infected directly, i.e., without copepods). One small cormorant (Phalacrocorax carbo sinensis) was successfully infected by feeding it with copepods harbouring C. rudolphii third-stage larvae.
Philometra overstreeti Moravec et de Buron, 2006 and Philomnetroides paralichthydis Moravec et de Buron, 2006 are common parasites of the southern flounder, Paralichthys lethostigma Jordan et Gilbert. Because the life cycles of these parasites are unknown, our goal was to assess whether species of copepod commonly found in our estuaries could serve as intermediate hosts for these philometrids. Individuals of five species of copepods were collected and exposed to L1 larvae of each philometrid species. The cyclopoid Oithlona colcarva Bowman was the only species to become successfully infected. Successive moulting of philometrid larvae in the haemocoel of the copepods was studied using transmission electron microscopy. At 23 degrees C the moult from L1 to L2 was observed for both species as early as 24 h post exposure to L1 larvae. The moult from L2 to L3 was initiated within 2 days post exposure and completed by 6-7 days post exposure. Some parasite-induced tissue damage occurred in the copepod but no cellular response against larval philometrids was observed.
Abstract: In a study of the benthic polychaete fauna of the southern Gulf of Mexico and the Caribbean Sea, several specimens of the terebellid polychaete Scionides reticulata (Ehlers) were found to host endoparasitic copepods that represent an undescribed species of the rare cyclopoid genus Entobius Dogiel, 1948. The new species, E. scionides sp. n., can be distinguished from its congeners by a combination of characters including a genital region without constrictions, three-segmented antennules, a reduced antenna with a blunt terminal process, reduced ornamentation of endopods of legs 1-4 and its relatively small size (2.3-2.7 mm). It is the smallest species of the genus. Comments on immature females are also provided, but males of this species remain unknown. It has a high prevalence (53%) in populations of the terebellid S. reticulata in the southern Gulf of Mexico, but it is absent from the Caribbean. This is the first occurrence of this copepod genus in the Americas. The finding of the new species of Entobius in S. reticulata confirms the strict specificity of most members of the genus and expands the host range of this copepod genus. A key for the identification of the species of Entobius is provided.
- MeSH
- Copepoda klasifikace ultrastruktura MeSH
- druhová specificita MeSH
- Polychaeta parazitologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- karibský region MeSH
- Mexický záliv MeSH
- Mexiko MeSH
A new species of parasitic copepod, Chondracanthus hoi sp. n. (Copepoda: Chondracanthidae), is described based on specimens of both sexes collected from the buccal cavity and gill arches of the silvery john dory, Zenopsis conchifer (Lowe) (Zeiformes: Zeidae), from waters off northern Argentina (35-36 degrees S, 53-54 degrees W). Female of C. hoi differs from its congeners by the following combination of characters: presence of five pairs of trunk processes, antennule with four knobs tipped with small setae and absence of denticles on the terminal process of maxilla. Chondracanthids and zeiform fishes have been proposed as an example of co-speciation; this assumption is derived from a series of analyses based on incomplete records of both geographical distribution and host range of some parasite species, as well as misidentification offish hosts. These inconsistences observed during our bibliographical analyses are also discussed.
- MeSH
- Copepoda klasifikace MeSH
- druhová specificita MeSH
- nemoci ryb epidemiologie parazitologie MeSH
- parazitární nemoci u zvířat epidemiologie parazitologie MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Argentina MeSH
- Atlantský oceán MeSH
Combining a minimum food web model with Arctic microbial community dynamics, we have suggested that top-down control by copepods can affect the food web down to bacterial consumption of organic carbon. Pursuing this hypothesis further, we used the minimum model to design and analyse a mesocosm experiment, studying the effect of high (+Z) and low (-Z) copepod density on resource allocation, along an organic-C addition gradient. In the Arctic, both effects are plausible due to changes in advection patterns (affecting copepods) and meltwater inputs (affecting carbon). The model predicts a trophic cascade from copepods via ciliates to flagellates, which was confirmed experimentally. Auto- and heterotrophic flagellates affect bacterial growth rate and abundance via competition for mineral nutrients and predation, respectively. In +Z, the model predicts low bacterial abundance and activity, and little response to glucose; as opposed to clear glucose consumption effects in -Z. We observed a more resilient bacterial response to high copepods and demonstrate this was due to changes in bacterial community equitability. Species able to use glucose to improve their competitive and/or defensive properties, became predominant. The observed shift from a SAR11-to a Psychromonodaceae - dominated community suggests the latter was pivotal in this modification of ecosystem function. We argue that this group used glucose to improve its defensive or its competitive abilities (or both). Adding such flexibility in bacterial traits to the model, we show how it creates the observed resilience to top-down manipulations observed in our experiment.
- MeSH
- autotrofní procesy MeSH
- Bacteria růst a vývoj izolace a purifikace metabolismus MeSH
- Ciliophora fyziologie MeSH
- Copepoda fyziologie MeSH
- fyziologie bakterií * MeSH
- glukosa metabolismus MeSH
- heterotrofní procesy MeSH
- mikrobiota MeSH
- potravní řetězec * MeSH
- uhlík metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
The parasitic copepod Neoergasilus japonicus (Harada, 1930) (Ergasilidae), native to east Asia, is widely distributed in Asia, Europe, and North and Central America. Recently, this species appeared in lentic water bodies of the River Dyje floodplain (Danube basin, Czech Republic). It was first recorded in 2015 and in 2 years it reached a 100% prevalence in recently expanding non-native fish host, Lepomis gibbosus (Linnaeus, 1758) (Centrarchidae, native to North America) at two borrow pits. Abundance of N. japonicus increased with fish length, with maximum intensity of infection reaching 99 parasites per fish. The parasite was most frequently found attached to the dorsal and anal fins of fish, while preference for the dorsal fin was more evident with lower infection intensities. Utilization of expanding fish hosts in water bodies that are regularly interconnected via natural or managed flooding may support the rapid dispersal of this non-native parasite.
- MeSH
- Copepoda fyziologie MeSH
- infestace ektoparazity parazitologie veterinární MeSH
- nemoci ryb parazitologie MeSH
- Perciformes parazitologie MeSH
- ploutve zvířat parazitologie MeSH
- řeky parazitologie MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
A population of the gill parasite Hatschekia pagellibogneravei (Hesse, 1878) was studied on one of its sparid fish hosts, the blackspot seabream, Pagellus bogaraveo (Brünnich), off the coast of Madeira Island, Portugal, northeast Atlantic. Very high infection levels of this copepod were detected, with no significant seasonal differences. Abundance was negatively correlated with fish size. There were significant differences in the distribution of this copepod among the gill arches of the host, which seem to be best explained by differences in water flow within the gill habitat.
- MeSH
- Copepoda fyziologie MeSH
- interakce hostitele a parazita MeSH
- nemoci ryb parazitologie MeSH
- Perciformes parazitologie MeSH
- žábry parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Geografické názvy
- Portugalsko MeSH