DustTrak Dotaz Zobrazit nápovědu
- Klíčová slova
- kaskádový imapktor, DustTrak, malá sidla, PM10, PM2,5,
- MeSH
- aerosoly izolace a purifikace škodlivé účinky MeSH
- bydlení normy MeSH
- financování organizované MeSH
- látky znečišťující životní prostředí normy škodlivé účinky MeSH
- lidé MeSH
- metaanalýza jako téma MeSH
- rizikové faktory MeSH
- statistika jako téma MeSH
- vytápění metody škodlivé účinky zákonodárství a právo MeSH
- znečištění vzduchu ve vnitřním prostředí prevence a kontrola škodlivé účinky zákonodárství a právo MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Nanomaterials are virtually ubiquitous as they are created by both natural processes and human activities. The amount of occupational exposure to unintentionally released nanoparticles can, therefore, be substantial. The aim of the study was to determine the concentrations of incidental nanoparticles that workers can be exposed to during welding operations and to assess related health risks. The specific focus on welding operations was determined based on the fact that other case studies on the manufacturing industry confirm significant exposure to incidental nanoparticles during welding. In the Czech Republic, 92% of all industrial workers are employed in the manufacturing industry, where welding operations are amply represented. MATERIAL AND METHODS: The particle number concentrations of particles in the size range of 20-1000 nm and particle mass concentrations of inhalable and PM1 fractions were determined via measurements carried out at 15-minute intervals for each welding operation by static sampling in close proximity to the worker. Measurements were obtained using the following instruments: NanoScan SMPS 3910, Optical Particle Sizer OPS 3330, P-TRAK 8525 and DustTrak DRX 8534. The assessed operations were manual arc welding and automatic welding. RESULTS: The observed average particle number concentrations for electric arc welders ranged 84×103-176×103 #/cm3, for welding machine operators 96×103-147×103 #/cm3, and for a welding locksmith the obtained average concentration was 179×103 #/cm3. The determined average mass concentration of PM1 particles ranged 0.45-1.4 mg/m3. CONCLUSIONS: Based on the conducted measurements, it was confirmed that there is a significant number of incidental nanoparticles released during welding operations in the manufacturing industry as a part of production and processing of metal products. The recommended occupational exposure limits for nanoparticle number concentrations were exceeded approximately 4-8 times for all assessed welding operations. The use of local exhaust ventilation in conjunction with personal protective equipment, including FFP2 or FFP3 particle filters, for welding is, therefore, recommended. Med Pr. 2021;72(3):219-30.
- MeSH
- inhalační expozice analýza MeSH
- látky znečišťující vzduch v pracovním prostředí * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- nanočástice * MeSH
- pracovní expozice * analýza MeSH
- svařování * MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The health effects of engineered nanoparticles in humans are not well-understood; however experimental data support the theory of oxidative stress promoting fibrogenesis and carcinogenicity. The aim of this study was to detect TiO2 particles in exhaled breath condensate (EBC) and urine samples to ascertain their presence and potential persistence and excretion in urine.EBC and urine samples were collected from 20 workers exposed to TiO2 aerosol; among them, 16 had a higher risk level of exposure (production workers) and four had medium risk level (research workers); in addition to 20 controls. Titanium levels in EBC and urine were analysed using the inductively coupled plasma mass spectrometry (ICP-MS) method. A Raman microspectroscopic analysis was performed in EBC and urine to identify the phase composition of TiO2 particles observed. Aerosol exposure in the workplaces was measured using SMPS and APS spectrometers and P-TRAK and DustTRAK DRX monitors.The median concentration of TiO2 aerosol was 1.98 × 10(4) particles cm(-3), the interquartile range (IQR) was 1.50 × 10(4) - 3.01 × 10(4) particles cm(-3) and the median mass concentration was 0.65 mg m(-3) (IQR 0.46-.0.83 mg m(-3)); 70-82% of the particles were smaller than 100 nm in diameter. In any part of the plant, the median TiO2 air concentration did not exceed the national airborne exposure limit of 10 mg m(-3) for inert dust. Particles of rutile and/or anatase were found in the EBC of exposed workers in 8/20 (40%) of the pre-shift and 14/20 (70%) of the post-shift samples. In the urine of workers, TiO2 particles were detected in 2/20 post-shift urine samples only. The mean concentration of titanium in the EBC in production workers was 24.1 ± 1.8 μg/l. In the research workers the values were below the limit of quantitation; LOQ = 4.0 ± 0.2 μg/l), as well as in the controls. In the urine samples of all of the subjects, titanium was under the limit of detection (LOD = 1.2 μg/l). Raman microanalysis of EBC in the workers confirmed the presence of TiO2 anatase and/or rutile crystal phases in the pre-shift samples and their persistence from previous shifts in the workers.
- MeSH
- dechové testy MeSH
- dospělí MeSH
- lidé MeSH
- oxidační stres účinky léků MeSH
- pracovní expozice * MeSH
- průřezové studie MeSH
- Ramanova spektroskopie metody MeSH
- titan analýza moč MeSH
- vydechnutí MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Markers of oxidative stress and inflammation were analysed in the exhaled breath condensate (EBC) and urine samples of 14 workers (mean age 43 ± 7 years) exposed to iron oxide aerosol for an average of 10 ± 4 years and 14 controls (mean age 39 ± 4 years) by liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) after solid-phase extraction. Aerosol exposure in the workplace was measured by particle size spectrometers, a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), and by aerosol concentration monitors, P-TRAK and DustTRAK DRX. Total aerosol concentrations in workplace locations varied greatly in both time and space. The median mass concentration was 0.083 mg m(-3) (IQR 0.063-0.133 mg m(-3)) and the median particle concentration was 66 800 particles cm(-3) (IQR 16,900-86,900 particles cm(-3)). In addition, more than 80% of particles were smaller than 100 nm in diameter. Markers of oxidative stress, malondialdehyde (MDA), 4-hydroxy-trans-hexenale (HHE), 4-hydroxy-trans-nonenale (HNE), 8-isoProstaglandin F2α (8-isoprostane) and aldehydes C6-C12, in addition to markers of nucleic acid oxidation, including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU), and of proteins, such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr) were analysed in EBC and urine by LC-ESI-MS/MS. Almost all markers of lipid, nucleic acid and protein oxidation were elevated in the EBC of workers comparing with control subjects. Elevated markers were MDA, HNE, HHE, C6-C10, 8-isoprostane, 8-OHdG, 8-OHG, 5-OHMeU, 3-ClTyr, 3-NOTyr, o-Tyr (all p < 0.001), and C11 (p < 0.05). Only aldehyde C12 and the pH of samples did not differ between groups. Markers in urine were not elevated. These findings suggest the adverse effects of nano iron oxide aerosol exposure and support the utility of oxidative stress biomarkers in EBC. The analysis of urine oxidative stress biomarkers does not support the presence of systemic oxidative stress in iron oxide pigment production workers.
- MeSH
- aldehydy analýza MeSH
- biologické markery analýza MeSH
- dechové testy MeSH
- dinoprost analogy a deriváty analýza MeSH
- dospělí MeSH
- guanosin analogy a deriváty analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- malondialdehyd analýza MeSH
- nanočástice toxicita MeSH
- oxidační stres účinky léků fyziologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- tyrosin analogy a deriváty analýza MeSH
- železité sloučeniny chemická syntéza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH