... Contents -- Preface -- 1 Decision-Theoretic Foundations -- 1.1 Game Theory, Rationality, and Intelligence ... ... Repeated Games 310 -- 7.3 Stationary Equilibria of Repeated Games with Complete State Information and ... ... Theorems for Standard Repeated Games 331 -- 7.6 Finitely Repeated Games and the Role of Initial Doubt ... ... 349 -- 7.9 Repeated Games with Incomplete Information 352 -- 7.10 Continuous Time 361 -- 7.11 Evolutionary ... ... -- 8.1 Noncooperative Foundations of Cooperative Game Theory 370 -- 8.2 Two-Person Bargaining Problems ...
1st Harvard University Press paperback ed. xiii, 568 s. : il. ; 24 cm
- MeSH
- Mathematics MeSH
- Game Theory MeSH
- Publication type
- Monograph MeSH
- Conspectus
- Matematika
- NML Fields
- přírodní vědy
Classic bimatrix games, that are based on pair-wise interactions between two opponents in two different roles, do not consider the effect that interaction duration has on payoffs. However, interactions between different strategies often take different amounts of time. In this article, we further develop a new approach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. We consider two scenarios: (i) individuals pair instantaneously so that there are no searchers, and (ii) searching for a partner takes positive time and populations consist of a mixture of singles and pairs. We describe pair dynamics and calculate fitnesses of each strategy for a two-strategy bimatrix game that includes interaction times. Assuming that distribution of pairs (and singles) evolves on a faster time scale than evolutionary dynamics described by the replicator equation, we analyze the Nash equilibria (NE) of the time-constrained game. This general approach is then applied to the Owner-Intruder bimatrix game where the two strategies are Hawk and Dove in both roles. While the classic Owner-Intruder game has at most one interior NE and it is unstable with respect to replicator dynamics, differences in pair duration change this prediction in that up to four interior NE may exist with their stability depending on whether pairing is instantaneous or not. The classic game has either one (all Hawk) or two ((Hawk,Dove) and (Dove,Hawk)) stable boundary NE. When interaction times are included, other combinations of stable boundary NE are possible. For example, (Dove,Dove), (Dove,Hawk), or (Hawk,Dove) can be the unique (stable) NE if interaction time between two Doves is short compared to some other interactions involving Doves.
- MeSH
- Biological Evolution MeSH
- Models, Biological MeSH
- Time Factors MeSH
- Interpersonal Relations * MeSH
- Humans MeSH
- Game Theory * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Game theoretic models of evolution such as the Hawk-Dove game assume that individuals gain fitness (which is a proxy of the per capita population growth rate) in pair-wise contests only. These models assume that the equilibrium distribution of phenotypes involved (e.g., Hawks and Doves) in the population is given by the Hardy-Weinberg law, which is based on instantaneous, random pair formation. On the other hand, models of population dynamics do not consider pairs, newborns are produced by singles, and interactions between phenotypes or species are described by the mass action principle. This article links game theoretic and population approaches. It shows that combining distribution dynamics with population dynamics can lead to stable coexistence of Hawk and Dove population numbers in models that do not assume a priori that fitness is negative density dependent. Our analysis shows clearly that the interior Nash equilibrium of the Hawk and Dove model depends both on population size and on interaction times between different phenotypes in the population. This raises the question of the applicability of classic evolutionary game theory that requires all interactions take the same amount of time and that all single individuals have the same payoff per unit of time, to real populations. Furthermore, by separating individual fitness into birth and death effects on singles and pairs, it is shown that stable coexistence in these models depends on the time-scale of the distribution dynamics relative to the population dynamics. When explicit density-dependent fitness is included through competition over a limited resource, the combined dynamics of the Hawk-Dove model often lead to Dove extinction no matter how costly fighting is for Hawk pairs.
Two most influential models of evolutionary game theory are the Hawk-Dove and Prisoner's dilemma models. The Hawk-Dove model explains evolution of aggressiveness, predicting individuals should be aggressive when the cost of fighting is lower than its benefit. As the cost of aggressiveness increases and outweighs benefits, aggressiveness in the population should decrease. Similarly, the Prisoner's dilemma models evolution of cooperation. It predicts that individuals should never cooperate despite cooperation leading to a higher collective fitness than defection. The question is then what are the conditions under which cooperation evolves? These classic matrix games, which are based on pair-wise interactions between two opponents with player payoffs given in matrix form, do not consider the effect that conflict duration has on payoffs. However, interactions between different strategies often take different amounts of time. In this article, we develop a new approach to an old idea that opportunity costs lost while engaged in an interaction affect individual fitness. When applied to the Hawk-Dove and Prisoner's dilemma, our theory that incorporates general interaction times leads to qualitatively different predictions. In particular, not all individuals will behave as Hawks when fighting cost is lower than benefit, and cooperation will evolve in the Prisoner's dilemma.
- MeSH
- Aggression MeSH
- Biological Evolution * MeSH
- Models, Biological MeSH
- Time Factors MeSH
- Interpersonal Relations * MeSH
- Cooperative Behavior MeSH
- Humans MeSH
- Game Theory * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
We develop a decision tree based game-theoretical approach for constructing functional responses in multi-prey/multi-patch environments and for finding the corresponding optimal foraging strategies. Decision trees provide a way to describe details of predator foraging behavior, based on the predator's sequence of choices at different decision points, that facilitates writing down the corresponding functional response. It is shown that the optimal foraging behavior that maximizes predator energy intake per unit time is a Nash equilibrium of the underlying optimal foraging game. We apply these game-theoretical methods to three scenarios: the classical diet choice model with two types of prey and sequential prey encounters, the diet choice model with simultaneous prey encounters, and a model in which the predator requires a positive recognition time to identify the type of prey encountered. For both diet choice models, it is shown that every Nash equilibrium yields optimal foraging behavior. Although suboptimal Nash equilibrium outcomes may exist when prey recognition time is included, only optimal foraging behavior is stable under evolutionary learning processes.
- MeSH
- Predatory Behavior MeSH
- Models, Theoretical * MeSH
- Game Theory * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this article the patch and diet choice models of the optimal foraging theory are reanalyzed with respect to evolutionary stability of the optimal foraging strategies. In their original setting these fundamental models consider a single consumer only and the resulting fitness functions are both frequency and density independent. Such fitness functions do not allow us to apply the classical game theoretical methods to study an evolutionary stability of optimal foraging strategies for competing animals. In this article frequency and density dependent fitness functions of optimal foraging are derived by separation of time scales in an underlying population dynamical model and corresponding evolutionarily stable strategies are calculated. Contrary to the classical foraging models the results of the present article predict that partial preferences occur in optimal foraging strategies as a consequence of the ecological feedback of consumer preferences on consumer fitness. In the case of the patch occupation model these partial preferences correspond to the ideal free distribution concept while in the case of the diet choice model they correspond to the partial inclusion of the less profitable prey type in predators diet.
The emergence of altruistic behavior constitutes one of the most widely studied problems in evolutionary biology and behavioral science. Multiple explanations have been proposed, most importantly including kin selection, reciprocity, and costly signaling in sexual selection. In order to test the latter, this study investigated whether people behave more altruistically when primed by photographs of attractive faces and whether more or less altruistic people differ in the number of sexual and romantic partners. Participants in the general population (N = 158, 84 F, 74 M) first rated the attractiveness of photographs of 20 faces of the opposite (sexually preferred) sex and then played the Dictator and Ultimatum Games (DG and UG). The photograph rating acted as priming; half the participants received photographs of people rated as more attractive than average in an earlier study, and the other half received photographs previously rated as less attractive. The attractiveness-primed participants, especially men, were expected to behave more altruistically-signaling that they are desirable, resource-possessing partners. We also expected altruists to self-report more sexual and romantic partners. The observed difference between altruistic behaviors in the attractiveness- and unattractiveness-primed groups occurred in UG offers, however, in the opposite than expected direction in women. The number of sexual partners was positively correlated to minimum acceptable offers (MAOs) in the UG, in line with expectations based on the theory of costly signaling.
- Publication type
- Journal Article MeSH
Several prominent evolutionary theories contend that religion was critical to the emergence of large-scale societies and encourages cooperation in contemporary complex groups. These theories argue that religious systems provide a reliable mechanism for finding trustworthy anonymous individuals under conditions of risk. In support, studies find that people displaying cues of religious identity are more likely to be trusted by anonymous coreligionists. However, recent research has found that displays of religious commitment can increase trust across religious divides. These findings are puzzling from the perspective that religion emerges to regulate coalitions. To date, these issues have not been investigated outside of American undergraduate samples nor have studies considered how religious identities interact with other essential group-membership signals, such as ancestry, to affect intergroup trust. Here, we address these issues and compare religious identity, ancestry, and trust among and between Christians and Hindus living in Mauritius. Ninety-seven participants rated the trustworthiness of faces, and in a modified trust game distributed money among these faces, which varied according to religious and ethnic identity. In contrast to previous research, we find that markers of religious identity increase monetary investments only among in-group members and not across religious divides. Moreover, out-group religious markers on faces of in-group ancestry decrease reported trustworthiness. These findings run counter to recent studies collected in the United States and suggest that local socioecologies influence the relationships between religion and trust. We conclude with suggestions for future research and a discussion of the challenges of conducting field experiments with remote populations.
- MeSH
- Adult MeSH
- Trust psychology MeSH
- Hinduism psychology MeSH
- Christianity psychology MeSH
- Humans MeSH
- Religion and Psychology * MeSH
- Facial Recognition * MeSH
- Group Processes * MeSH
- Social Identification * MeSH
- Social Perception * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Mauritius MeSH
1st ed. viii, 296 s.