Fv/Fm Dotaz Zobrazit nápovědu
Nitric oxide (NO) stimulated the activity of plasma membrane H+-ATPase, 5'-nucleotidase, peroxidase, ascorbate peroxidase and glutathione reductase in ultraviolet B (UV-B) irradiated Chlorella pyrenoidosa. It also boosted the activity of nitrogen-metabolism enzymes such as nitrate reductase, nitrite reductase, glutamine synthetase, which were inhibited by UV-B irradiation. The chlorophyll fluorescence ratio (Fv/Fm) of the UV-B irradiated algae and decreased continuously after the cells were transferred to UV-B irradiation. A continuing decrease of the Fv/Fm was observed even after the cells were transferred to photosynthetically active radiation (PAR). After adaptation for 8 h under PAR (after treatment with nitric oxide), Fv/Fm recovered to 55 % of normal levels--without NO the value approached zero. Exogenous NO stopped the decay of chlorophyll and thylakoid membrane in cells exposed to UV-B irradiation. NO plays probably a key role in damage induced by UV-B irradiation in green algae.
We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)-A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light-emitting-diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 min of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (ϕPSII, a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (Fv /Fm to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic compound accumulation in response to BL and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially mediated constitutive accumulation of phenolic compounds in the absence of BL. Low-irradiance BL and UV-A did not improve ϕPSII and Fv /Fm upon our acute high-light treatment; however, CRYs played an important role in ameliorating high-light stress.
Lichens survive harsh weather of Antarctica as well as of other hostile environments worldwide. Therefore, this investigation is important to understand the evolution of life on Earth in relation to their stress tolerance strategy. We have used chlorophyll a fluorescence (ChlF) and Raman spectroscopy, respectively, to monitor the activation/deactivation of photosynthesis and carotenoids in three diverse Antarctic lichens, Dermatocarpon polyphyllizum (DP), Umbilicaria antarctica (UA), and Leptogium puberulum (LP). These lichens, post 4 h or 24 h of hydration, showed differences in their ChlF transients and values of major ChlF parameters, e.g., in the maximum quantum efficiency of PSII photochemistry (Fv/Fm), and yields of fluorescence and heat dissipation (Φf,d), of effective quantum efficiency of PSII photochemistry (ΦPSII) and of non-photochemical quenching (Φnpq), which may be due to quantitative and/or qualitative differences in the composition of their photobionts. For understanding the kinetics of hydration-induced activation of photosynthesis, we screened ΦPSII of these lichens and reported its non-linear stimulation on a minute time scale; half of the activation time (t1/2) was fastest ~4.05 ± 0.29 min for DP, which was followed by 5.46 ± 0.18 min for UA, and 13.95 ± 1.24 min for LP. Upon drying of fully activated lichen thallus, there was a slow decay, in hours, of relative water content (RWC) as well as of Fv/Fm. Raman spectral signatures were different for lichens having algal (in DP and UA) and cyanobacteria (in LP) photobionts, and there was a significant shift in ν1(C=C) Raman band of carotenoids post 24 h hydration as compared to their value at a dry state or post 4 h of hydration; this shift was decreased, when drying, in DP and LP but not in UA. We conclude that hydration nonlinearly activated photosynthetic apparatus/reactions of these lichens in minute time range but there was a de-novo synthesis of chlorophylls as well as of carotenoids post 24 h. Their dehydration-induced deactivation, however, was comparatively slow, in hours range, and there seemed a degradation of synthesized chlorophylls and carotenoids post dryness. We conclude that in extremophilic lichens, their photosynthetic partners, in particular, possess a complex survival and photoprotective strategy to be successful in the extreme terrestrial environments in Antarctica.
- MeSH
- Ascomycota MeSH
- chlorofyl a MeSH
- chlorofyl MeSH
- fluorescence MeSH
- fotosyntéza MeSH
- karotenoidy metabolismus MeSH
- lišejníky * metabolismus MeSH
- Ramanova spektroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Antarktida MeSH
Essential trace elements (Cu(2+), Zn(2+), etc) lead to toxic effects above a certain threshold, which is a major environmental problem in many areas of the world. Here, environmentally relevant sub-micromolar concentrations of Cu(2+) and simulations of natural light and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum a s a model for plant shoots. In this low irradiance study resembling non-summer conditions, growth was optimal in the range 7.5-35nM Cu, while PSII activity (Fv/Fm) was maximal around 7.5nM Cu. Damage to the light harvesting complex of photosystem II (LHCII) was the first target of Cu toxicity (>50nM Cu) where Cu replaced Mg in the LHCII-trimers. This was associated with a subsequent decrease of Chl a as well as heat dissipation (NPQ). The growth rate was decreased from the first week of Cu deficiency. Plastocyanin malfunction due to the lack of Cu that is needed for its active centre was the likely cause of diminished electron flow through PSII (ΦPSII). The pigment decrease added to the damage in the photosynthetic light reactions. These mechanisms ultimately resulted in decrease of starch and oxygen production.
- MeSH
- biologické markery metabolismus MeSH
- chemické látky znečišťující vodu chemie toxicita MeSH
- fotosyntéza účinky léků fyziologie MeSH
- Magnoliopsida účinky léků růst a vývoj metabolismus MeSH
- měď chemie nedostatek toxicita MeSH
- proteom účinky léků metabolismus MeSH
- proteomika MeSH
- světlo MeSH
- testy toxicity MeSH
- vodní organismy účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Early stages of ontogenesis determining subsequent growth, development, and productivity of crops can be affected by wastewater and sludge contaminated with pharmaceuticals. Diclofenac (DCF) and paracetamol (PCT; both 0.0001 to 10 mg/L) did not affect seed germination and primary root length of onion, lettuce, pea, and tomato. Conversely, 20-day-old pea and maize plants exhibited decrease in biomass production, leaf area (by approx. 40% in pea and 70% in maize under 10 mg/L DCF), or content of photosynthetic pigments (by 10% and 60% under 10 mg/L PCT). Quantum yields of photosystem II were reduced only in maize (FV/FM and ΦII by more than 40% under 10 mg/L of both pharmaceuticals). Contents of H2O2 and superoxide increased in roots of both species (more than four times under 10 mg/L PCT in pea). Activities of antioxidant enzymes were elevated in pea under DCF treatments, but decreased in maize under both pharmaceuticals. Oxidative injury of root cells expressed as lowered oxidoreductase activity (MTT assay, by 40% in pea and 80% in maize) and increase in malondialdehyde content (by 60% and 100%) together with the membrane integrity disruption (higher Evans Blue accumulation, by 100% in pea and 300% in maize) confirmed higher sensitivity of maize as a C4 monocot plant to both pharmaceuticals.
- MeSH
- antioxidancia analýza MeSH
- chemické látky znečišťující vodu toxicita MeSH
- diklofenak analýza toxicita MeSH
- fotosyntéza účinky léků MeSH
- klíčení účinky léků MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- listy rostlin účinky léků MeSH
- malondialdehyd analýza MeSH
- odpadní voda chemie MeSH
- paracetamol analýza toxicita MeSH
- peroxid vodíku analýza metabolismus MeSH
- semena rostlinná účinky léků fyziologie MeSH
- zemědělské plodiny účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
We studied the resistance of Parmotrema austrosinense to UV-B stress. We focused on the effects of a high dose UV-B radiation on the content of chlorophylls, carotenoids and UV-B screening compounds. Photosynthetic parameters were measured by chlorophyll fluorescence (potential and effective quantum yields, photochemical and non-photochemical quenching) and evaluated in control and UV-B-treated lichens. Lichens from two different locations in Cordoba, Argentina, were selected: (i) high altitude and dry plots at (Los Gigantes) and (ii) lowland high salinity plots (Salinas Grandes). UV-B treatment led to a decrease in the content of photosynthetic pigments and UV-B screens (absorbance decrease in 220-350 nm) in the samples from Salinas Grandes, while in Los Gigantes samples, an increase in UV-B screen content was observed. Chlorophyll fluorescence parameters showed a UV-B-induced decline in FV /FM , ΦPSII and qP indicating limitation of primary photosynthetic processes in photosystem II (PSII) of symbiotic alga, more pronounced in Salinas Grandes samples. Protective mechanism of PSII were activated by the UV-B treatment to a higher extent in samples from Salinas Grandes (NPQ 0.48) than in Los Gigantes samples (NPQ 0.26). We concluded that site-related characteristics, and in particular different UV-B radiation regimen, had a strong effect on resistance of the photosynthetic apparatus of P. austrosinense to UV-B radiation.
- MeSH
- chlorofyl analýza metabolismus MeSH
- ekosystém MeSH
- fluorescence MeSH
- fotosyntéza účinky záření MeSH
- karotenoidy analýza metabolismus MeSH
- lišejníky chemie metabolismus účinky záření MeSH
- nadmořská výška MeSH
- tolerance k soli účinky záření MeSH
- ultrafialové záření * MeSH
- Publikační typ
- časopisecké články MeSH
Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light-acclimated PSII activity ΦPSII , and total Chl). Trimers of the PSII light-harvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.
- MeSH
- fotosyntéza * MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- kadmium toxicita MeSH
- Magnoliopsida účinky léků fyziologie účinky záření MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- superoxidy metabolismus MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genus Acaryochloris is unique among phototrophic organisms due to the dominance of chlorophyll d in its photosynthetic reaction centres and light-harvesting proteins. This allows Acaryochloris to capture light energy for photosynthesis over an extended spectrum of up to ~760 nm in the near infra-red (NIR) spectrum. Acaryochloris sp. has been reported in a variety of ecological niches, ranging from polar to tropical shallow aquatic sites. Here, we report a new Acarychloris strain isolated from an NIR-enriched stratified microbial layer 4-6 mm under the surface of stromatolite mats located in the Hamelin Pool of Shark Bay, Western Australia. Pigment analysis by spectrometry/fluorometry, flow cytometry and spectral confocal microscopy identifies unique patterns in pigment content that likely reflect niche adaption. For example, unlike the original A. marina species (type strain MBIC11017), this new strain, Acarychloris LARK001, shows little change in the chlorophyll d/a ratio in response to changes in light wavelength, displays a different Fv/Fm response and lacks detectable levels of phycocyanin. Indeed, 16S rRNA analysis supports the identity of the A. marina LARK001 strain as close to but distinct from from the A. marina HICR111A strain first isolated from Heron Island and previously found on the Great Barrier Reef under coral rubble on the reef flat. Taken together, A. marina LARK001 is a new cyanobacterial strain adapted to the stromatolite mats in Shark Bay.
- Publikační typ
- časopisecké články MeSH
We have worked out a rapid 1-day test based on photosynthesis measurements to estimate suitable growth temperature of microalgae cultures. To verify the proposed procedure, several microalgae-Chlorella, Nostoc, Synechocystis, Scenedesmus, and Cylindrospermum-were cultured under controlled laboratory conditions (irradiance, temperature, mixing, CO2, and nutrient supply) to find the optima of photosynthetic activity using the range between 15 and 35 °C. These activities were recorded at each temperature step after 2 h of acclimation which should be sufficient as oxygen production and the PQ cycle are regulated by fast processes. Photosynthetic activity was measured using three techniques-oxygen production/respiration, saturating pulse analysis of fluorescence quenching, and fast fluorescence induction kinetics-to estimate the temperature optima which should correspond to high growth rate. We measured all variables that might have been directly related to growth-photosynthetic oxygen evolution, maximum photochemical yield of PSII, Fv/Fm, relative electron transport rate rETRmax, and the transients Vj and Vi determined by fast fluorescence induction curves. When the temperature optima for photosynthetic activity were verified in growth tests, we found good correlation. For most of tested microalgae strains, temperature around 30 °C was found to be the most suitable at this setting. We concluded that the developed test can be used as a rapid 1-day pre-screening to estimate a suitable growth temperature of microalgae strains before they are cultured in a pilot scale.
- MeSH
- Chlorella růst a vývoj metabolismus účinky záření MeSH
- fotosyntéza MeSH
- kinetika MeSH
- kultivační techniky metody MeSH
- kyslík metabolismus MeSH
- mikrořasy růst a vývoj metabolismus účinky záření MeSH
- Scenedesmus růst a vývoj metabolismus účinky záření MeSH
- sinice růst a vývoj metabolismus účinky záření MeSH
- světlo MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
Mechanisms of pharmaceuticals action on biochemical and physiological processes in plants that determine plant growth and development are still mostly unknown. This study deals with the effects of non-steroidal anti-inflammatory drug diclofenac (DCF) on photosynthesis as an essential anabolic process. Changes in primary and secondary photosynthetic processes were assessed in chloroplasts isolated from Lemna minor exposed to 1, 10, 100, and 1000 μM DCF. Decreases in the potential and effective quantum yields of photosystem II (FV/FM by 21%, ΦII by 44% compared to control), changes in non-photochemical fluorescence quenching (NPQ), and a substantial drop in Hill reaction activity (by 73%), especially under 1000 μM DCF, were found. Limitation of electron transport through photosystem II was confirmed by increased fluorescence signals in steps J and I (by 50% and 23%, respectively, under 1000 μM DCF) in OJIP fluorescence transient. Photosystem I exhibited changes only in the redox state of P700 reaction centres (decrease in Pm by 10%, increase in reduced P700 by 5% under 1000 μM DCF). Similarly, RuBisCO activity was only lowered by 30% under 1000 μM DCF. In contrast, a significant increase in reactive oxygen and nitrogen species (by 116% and 157%, respectively) was observed under 10 μM DCF, and lipid peroxidation increased even at 1 μM DCF (by nearly seven times compared to the control). Results demonstrate the ability of environmentally relevant DCF concentrations to induce oxidative stress in isolated duckweed chloroplasts; however, photosynthetic processes were affected considerably only by the highest DCF treatments.
- MeSH
- Araceae účinky léků růst a vývoj ultrastruktura MeSH
- chloroplasty účinky léků metabolismus MeSH
- diklofenak farmakologie toxicita MeSH
- fotosyntéza účinky léků MeSH
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex účinky léků metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- transport elektronů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH