Han, Yan-Ming* Dotaz Zobrazit nápovědu
Orius strigicollis (Poppius) is an anthocorid bug with high foraging ability on thrips as well as on mites, and the bug has been considered as a potential biological control agent in Taiwan. Life table and predation studies of O. strigicollis fed on Cadra cautella (Walker) and Tetranychus urticae (Koch) eggs were conducted at 25 ± 1°C. Data were analyzed and compared using TWOSEX-MSChart and CONSUME-MSChart software. O. strigicollis fed on eggs of C. cautella, a substitute prey, showed significantly higher survival rate and developmental rate than individuals fed on their natural prey, T. urticae eggs. The fecundity of O. strigicollis fed on C. cautella eggs was, on average, 13.2 times higher than that of those fed on T. urticae eggs, despite of the fact that during the entire nymphal stage, the consumption rate of O. strigicollis on T. urticae eggs was ca. 9 times higher than on almond moth eggs The conversion rate (i.e., number of prey eggs needed to produce one predator egg) for this predatory bug reared on T. urticae eggs and almond moth eggs were 604.6 and 6.0, respectively, indicating that almond moth eggs served as an effective alternative prey for ensuring the predator's reproduction. This is the first study pertaining to the population parameters and predation rates of O. strigicollis using the age-stage two-sex approach to describe differences between O. strigicollis populations reared on natural and alternative preys. This information may be useful in mass rearing programs and field application involving this biological control agent.
- MeSH
- biologická kontrola škůdců * MeSH
- dieta MeSH
- Heteroptera růst a vývoj fyziologie MeSH
- můry * růst a vývoj MeSH
- nymfa růst a vývoj fyziologie MeSH
- ovum MeSH
- predátorské chování * MeSH
- tabulky života MeSH
- Tetranychidae * růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study was to evaluate the efficacy of TOXO-XL (XL), an integrated mycotoxin-mitigating agent, on aflatoxin B1 (AFB1)-induced damage in Leghorn male hepatoma (LMH), porcine jejunum epithelial cell line (IPEC-J2) and porcine alveolar macrophages (3D4/21) cells, and to explore its potential mechanisms. The results showed that 30% inhibition concentration (IC30) of AFB1 in LMH, IPEC-J2 and 3D4/21 cells was 0.5, 15.0, and 2.5 mg/L, respectively. Notably, cell viability, ROS, apoptosis and DNA lesion induced by AFB1 (IC30) could be ameliorated by the supplementation with XL at the dosage of 0.025, 0.025 and 0.005%, respectively. Additionally, the migration and phagocytosis abilities impaired by AFB1 were also restored by XL in 3D4/21. Further experiments revealed that XL supplementation markedly attenuated AFB1-induced inflammatory response by decreasing IL-1β, IL-6 and IL-10 in LMH, IL-6 in IPEC-J2 and IL-1β in 3D4/21 cells. Meanwhile, XL supplementation reversed the alterations of BAX, BCL-2 and caspase-3 induced by AFB1 in the three cells, suggesting that AFB1-induced apoptosis may be suppressed via the mitochondria-dependent pathway. Furthermore, XL may have a protective effect on the intestinal barrier through the restoration of occludin protein. Conclusively, these findings indicated that XL could alleviate AFB1-induced cytotoxicity in the three cells, potentially through the regulation of cytokines, ROS, apoptotic and DNA damage signaling.
- MeSH
- aflatoxin B1 toxicita metabolismus MeSH
- apoptóza MeSH
- epitelové buňky MeSH
- hepatocelulární karcinom * metabolismus MeSH
- interleukin-6 metabolismus MeSH
- kur domácí metabolismus MeSH
- nádory jater * metabolismus MeSH
- prasata MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication-related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.
Rye is a valuable food and forage crop, an important genetic resource for wheat and triticale improvement and an indispensable material for efficient comparative genomic studies in grasses. Here, we sequenced the genome of Weining rye, an elite Chinese rye variety. The assembled contigs (7.74 Gb) accounted for 98.47% of the estimated genome size (7.86 Gb), with 93.67% of the contigs (7.25 Gb) assigned to seven chromosomes. Repetitive elements constituted 90.31% of the assembled genome. Compared to previously sequenced Triticeae genomes, Daniela, Sumaya and Sumana retrotransposons showed strong expansion in rye. Further analyses of the Weining assembly shed new light on genome-wide gene duplications and their impact on starch biosynthesis genes, physical organization of complex prolamin loci, gene expression features underlying early heading trait and putative domestication-associated chromosomal regions and loci in rye. This genome sequence promises to accelerate genomic and breeding studies in rye and related cereal crops.
- MeSH
- délka genomu MeSH
- duplikace genu MeSH
- genetické lokusy MeSH
- genom rostlinný * MeSH
- kontigové mapování metody MeSH
- kvantitativní znak dědičný * MeSH
- pšenice genetika MeSH
- regulace genové exprese u rostlin MeSH
- retroelementy MeSH
- rostlinné proteiny genetika metabolismus MeSH
- škrob biosyntéza MeSH
- šlechtění rostlin MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zemědělské plodiny genetika MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Resistance to glucocorticoids (GC), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-offunction experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GC-resistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GC against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.
- MeSH
- antigeny CD9 * metabolismus genetika MeSH
- chemorezistence * genetika MeSH
- dexamethason farmakologie MeSH
- dítě MeSH
- glukokortikoidy * farmakologie terapeutické užití MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- pre-B-buněčná leukemie * farmakoterapie metabolismus genetika patologie MeSH
- předškolní dítě MeSH
- receptory glukokortikoidů metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- autofagie * fyziologie MeSH
- biotest metody normy MeSH
- lidé MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- MeSH
- autofagie * fyziologie MeSH
- autofagozomy MeSH
- biologické markery MeSH
- biotest normy MeSH
- lidé MeSH
- lyzozomy MeSH
- proteiny spojené s autofagií metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- směrnice MeSH
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
- MeSH
- biodiverzita MeSH
- ekologie MeSH
- ekosystém * MeSH
- přístup k informacím * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH