ImageStream
Dotaz
Zobrazit nápovědu
Ionizing radiation induced foci (IRIF) are considered the most sensitive indicator for DNA double-strand break (DSB) detection. Monitoring DSB induction by low doses of ionizing radiation is important due to the increasing exposure in the general population. γH2AX and 53BP1 are commonly used molecular markers for in situ IRIF assessment. Imaging flow cytometry (IFC) via ImageStream system provides a new opportunity in this field. We analyzed the formation of 53BP1, γH2AX foci and their co-localization induced by γ-rays (2, 5, 10, 50, 200 cGy) in human lymphocytes using ImageStream and the automated microscopic system Metafer. We observed very similar sensitivity of both systems for the detection of endogenous and low-dose-induced IRIF. Statistically significant induction of γH2AX foci was found at doses of 2 and 10 cGy using ImageStream and Metafer, respectively. Statistically significant induction of 53BP1 foci was evident at doses ≥ 5 cGy when analyzed by IFC. Analysis of the co-localizing foci by ImageStream and Metafer showed statistical significance at doses ≥ 2 cGy, suggesting that foci co-localization is a sensitive parameter for DSB quantification. Assessment of γH2AX, 53BP1 foci and their co-localization by Metafer and ImageStream showed similar linear dose responses in the low-dose range up to 10 cGy, although IFC showed slightly better resolution for IRIF in this dose range. At higher doses, IFC underestimated IRIF numbers. Using the imaging ability of ImageStream, we introduced an optimized assay by gating γH2AX foci positive (with 1 or more γH2AX foci) and negative (cells without foci) cells. This assay resulted in statistically significant IRIF induction at doses ≥ 5cGy and a linear dose response up to 50 cGy. In conclusion, we provide evidence for the use of IFC as an accurate high throughput assay for the prompt detection and enumeration of endogenous and low-dose induced IRIF.
- MeSH
- 53BP1 metabolismus MeSH
- fluorescenční mikroskopie MeSH
- histony metabolismus MeSH
- lidé MeSH
- lymfocyty metabolismus účinky záření MeSH
- poškození DNA * MeSH
- průtoková cytometrie metody MeSH
- software MeSH
- vztah dávky záření a odpovědi MeSH
- záření gama * MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Although metabolic associate fatty liver disease (MAFLD) is associated with obesity, it can also occur in lean patients. MAFLD is more aggressive in lean patients compared to obese patients, with a higher risk of mortality. Specific biomarkers to diagnose differentially lean or overweight MAFLD are missing. Histones and nucleosomes are released in the bloodstream upon cell death. Here, we propose a new, fast, imaging and epigenetics based approach to investigate the severity of steatosis in lean MAFLD patients. RESULTS: A total of 53 non-obese patients with histologically confirmed diagnosis of MAFLD were recruited. Twenty patients displayed steatosis grade 1 (0-33%), 24 patients with steatosis grade 2 (34-66%) and 9 patients with steatosis grade 3 (67-100%). The levels of circulating nucleosomes were assayed using enzyme-linked immunosorbent assay, while individual histones or histone dimers were assayed in serum samples by means of a new advanced flow cytometry ImageStream(X)-adapted method. Circulating nucleosome levels associated poorly with MAFLD in the absence of obesity. We implemented successfully a multi-channel flow methodology on ImageStream(X), to image single histone staining (H2A, H2B, H3, H4, macroH2A1.1 and macroH2A1.2). We report here a significant depletion of the levels of histone variants macroH2A1.1 and macroH2A1.2 in the serum of lean MAFLD patients, either individually or in complex with H2B. CONCLUSIONS: In summary, we identified a new circulating histone signature able to discriminate the severity of steatosis in individuals with lean MAFLD, using a rapid and non-invasive ImageStream(X)-based imaging technology.
- MeSH
- dospělí MeSH
- histony krev MeSH
- hubenost krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolické nemoci krev komplikace MeSH
- stupeň závažnosti nemoci MeSH
- ztučnělá játra krev komplikace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Introduction: Pediatric brain tumours (PBT) are one of the most common malignancies during childhood, with variable severity according to the location and histological type. Certain types of gliomas, such a glioblastoma and diffuse intrinsic pontine glioma (DIPG), have a much higher mortality than ependymoma and medulloblastoma. Early detection of PBT is essential for diagnosis and therapeutic interventions. Liquid biopsies have been demonstrated using cerebrospinal fluid (CSF), mostly restricted to cell free DNA, which display limitations of quantity and integrity. In this pilot study, we sought to demonstrate the detectability and robustness of cell free histones in the CSF. Methods: We collected CSF samples from a pilot cohort of 8 children with brain tumours including DIPG, medulloblastoma, glioblastoma, ependymoma and others. As controls, we collected CSF samples from nine children with unrelated blood malignancies and without brain tumours. We applied a multichannel flow imaging approach on ImageStream(X) to image indiviual histone or histone complexes on different channels. Results: Single histones (H2A, macroH2A1.1, macroH2A1.2 H2B, H3, H4 and histone H3 bearing the H3K27M mutation), and histone complexes are specifically detectable in the CSF of PBT patients. H2A and its variants macroH2A1.1/macroH2A1/2 displayed the strongest signal and abundance, together with disease associated H3K27M. In contrast, mostly H4 is detectable in the CSF of pediatric patients with blood malignancies. Discussion: In conclusion, free histones and histone complexes are detectable with a strong signal in the CSF of children affected by brain tumours, using ImageStream(X) technology and may provide additive diagnostic and predictive information.
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Diffuse midline glioma, H3 K27-altered (DMG) is a fatal tumour that arises in the midline structures of the brain. When located in the pons, it is more commonly referred to as diffuse intrinsic pontine glioma (DIPG). DMG/DIPG is usually diagnosed when children are < 10 years, and it has a median overall survival of < 12 months after diagnosis. Radiological imaging is still the gold standard for DIPG diagnosis while the use of biopsy procedures led to our knowledge on its biology, such as with the identification of the canonical histone H3K27M mutation. However, the need to improve survival encourages the development of non-invasive, fast and inexpensive assays on biofluids for optimizing molecular diagnoses in DMG/DIPG. Here, we propose a rapid, new, imaging and epigenetics-based approach to diagnose DMG/DIPG in the plasma of paediatric patients. METHODS: A total of 20 healthy children (mean age: 10.5 years) and 24 children diagnosed with DMG/DIPG (mean age: 8.5 years) were recruited. Individual histones (H2A, H2B, H3, H4, macroH2A1.1 and macroH2A1.2), histone dimers and nucleosomes were assayed in biofluids by means of a new advanced flow cytometry ImageStream(X)-adapted method. RESULTS: We report a significant increase in circulating histone dimers and tetramers (macroH2A1.1/H2B versus control: p value < 0.0001; macroH2A1.2/H2B versus control: p value < 0.0001; H2A/H2B versus control: p value < 0.0001; H3/H4 versus control: p value = 0.008; H2A/H2B/H3/H4 versus control: p value < 0.0001) and a significant downregulation of individual histones (H2B versus control: p value < 0.0001; H3 versus control: p value < 0.0001; H4 versus control: p value < 0.0001). Moreover, histones were also detectable in the cerebrospinal fluid (CSF) of patients with DMG/DIPG and in the supernatant of SF8628, OPBG-DIPG002 and OPBG-DIPG004 DMG/DIPG cell lines, with patterns mostly similar to each other, but distinct compared to blood plasma. CONCLUSIONS: In summary, we identified circulating histone signatures able to detect the presence of DMG/DIPG in biofluids of children, using a rapid and non-invasive ImageStream(X)-based imaging technology, which may improve diagnosis and benefit the patients.
- MeSH
- difuzní intrinsický pontinní gliom genetika diagnóza krev MeSH
- dítě MeSH
- epigeneze genetická MeSH
- gliom genetika diagnóza krev patologie diagnostické zobrazování MeSH
- histony * genetika metabolismus krev MeSH
- lidé MeSH
- mladiství MeSH
- mutace MeSH
- nádorové biomarkery krev MeSH
- nádory mozkového kmene genetika diagnóza krev diagnostické zobrazování patologie metabolismus MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
:Background: Current diagnosis and staging of advanced epithelial ovarian cancer (aEOC) has important limitations and better biomarkers are needed. We investigate the performance of non-haematopoietic circulating cells (CCs) at the time of disease presentation and relapse. Methods: Venous blood was collected prospectively from 37 aEOC patients and 39 volunteers. CCs were evaluated using ImageStream TechnologyTM and specific antibodies to differentiate epithelial cells from haematopoetic cells. qRT-PCR from whole blood of relapsed aEOC patients was carried out for biomarker discovery. Results: Significant numbers of CCs (CK+/WT1+/CD45-) were identified, quantified and characterised from aEOC patients compared to volunteers. CCs are abundant in women with newly diagnosed aEOC, prior to any treatment. Evaluation of RNA from the CCs in relapsed aEOC patients (n = 5) against a 79-gene panel revealed several differentially expressed genes compared to volunteers (n = 14). Size differentiation of CCs versus CD45+ haematopoietic cells was not reliable. Conclusion: CCs of non-haematopoetic origin are prevalent, particularly in patients with newly diagnosed aEOC. Exploiting a CC-rich population in aEOC patients offers insights into a part of the circulating microenvironment.
- MeSH
- antigeny CD45 metabolismus MeSH
- karcinom krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové cirkulující buňky metabolismus patologie MeSH
- nádory vaječníků krev MeSH
- proteiny WT1 metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in children and adolescents, increasing the risk of its progression toward nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. There is an urgent need for noninvasive early diagnostic and prognostic tools such as epigenetic marks (epimarks), which would replace liver biopsy in the future. We used plasma samples from 67 children with biopsy-proven NAFLD, and as controls we used samples from 20 children negative for steatosis by ultrasound. All patients were genotyped for patatin-like phospholipase domain containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane bound O-acyltransferase domain containing 7 (MBOAT7), and klotho-β (KLB) gene variants, and data on anthropometric and biochemical parameters were collected. Furthermore, plasma cell-free DNA (cfDNA) methylation was quantified using a commercially available kit, and ImageStream(X) was used for the detection of free circulating histone complexes and variants. We found a significant enrichment of the levels of histone macroH2A1.2 in the plasma of children with NAFLD compared to controls, and a strong correlation between cfDNA methylation levels and NASH. Receiver operating characteristic curve analysis demonstrated that combination of cfDNA methylation, PNPLA3 rs738409 variant, coupled with either high-density lipoprotein cholesterol or alanine aminotransferase levels can strongly predict the progression of pediatric NAFLD to NASH with area under the curve >0.87. Conclusion: Our pilot study combined epimarks and genetic and metabolic markers for a robust risk assessment of NAFLD development and progression in children, offering a promising noninvasive tool for the consistent diagnosis and prognosis of pediatric NAFLD. Further studies are necessary to identify their pathogenic origin and function.
- MeSH
- dítě MeSH
- histony genetika MeSH
- lidé MeSH
- lipasa genetika MeSH
- membránové proteiny genetika MeSH
- metylace DNA genetika MeSH
- mladiství MeSH
- nealkoholová steatóza jater * diagnóza MeSH
- pilotní projekty MeSH
- volné cirkulující nukleové kyseliny * metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH