Lab-in-syringe automation
Dotaz
Zobrazit nápovědu
About eight years ago, a new automation approach and flow technique called "Lab-In-Syringe" was proposed. It was derived from previous flow techniques, all based on handling reagent and sample solutions in a flow manifold. To date Lab-In-Syringe has evidently gained the interest of researchers in many countries, with new modifications, operation modes, and technical improvements still popping up. It has proven to be a versatile tool for the automation of sample preparation, particularly, liquid-phase microextraction approaches. This article aims to assist newcomers to this technique in system planning and setup by overviewing the different options for configurations, limitations, and feasible operations. This includes syringe orientation, in-syringe stirring modes, in-syringe detection, additional inlets, and addable features. The authors give also a chronological overview of technical milestones and a critical explanation on the potentials and shortcomings of this technique, calculations of characteristics, and tips and tricks on method development. Moreover, a comprehensive overview of the different operation modes of Lab-In-Syringe automated sample pretreatment is given focusing on the technical aspects and challenges of the related operations. We further deal with possibilities on how to fabricate required or useful system components, in particular by 3D printing technology, with over 20 different elements exemplarily shown. Finally, a short discussion on shortcomings and required improvements is given.
Online coupling of Lab-In-Syringe automated headspace extraction to gas chromatography has been studied. The developed methodology was successfully applied to surface water analysis using benzene, toluene, ethylbenzene, and xylenes as model analytes. The extraction system consisted of an automatic syringe pump with a 5 mL syringe into which all solutions and air for headspace formation were aspirated. The syringe piston featured a longitudinal channel, which allowed connecting the syringe void directly to a gas chromatograph with flame ionization detector via a transfer capillary. Gas injection was achieved via opening a computer-controlled pinch valve and compressing the headspace, upon which separation was initialized. Extractions were performed at room temperature; yet sensitivity comparable to previous work was obtained by high headspace to sample ratio VHS/VSample of 1.6:1 and injection of about 77% of the headspace. Assistance by in-syringe magnetic stirring yielded an about threefold increase in extraction efficiency. Interferences were compensated by using chlorobenzene as an internal standard. Syringe cleaning and extraction lasting over 10 min was carried out in parallel to the chromatographic run enabling a time of analysis of <19 min. Excellent peak area repeatabilities with RSD of <4% when omitting and <2% RSD when using internal standard corrections on 100 μg L-1 level were achieved. An average recovery of 97.7% and limit of detection of 1-2 μg L-1 were obtained in analyses of surface water.
- MeSH
- automatizace MeSH
- benzen analýza izolace a purifikace MeSH
- benzenové deriváty analýza izolace a purifikace MeSH
- limita detekce MeSH
- mikroextrakce na pevné fázi MeSH
- plamínková ionizace metody MeSH
- teplota MeSH
- toluen analýza izolace a purifikace MeSH
- voda chemie MeSH
- xyleny analýza izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
A sample preparation method involving tandem implementation of protein precipitation and salting-out homogenous liquid-liquid extraction was developed for the determination of beta-blockers in serum. The entire procedure was automated using a computer-controlled syringe pump following the Lab-In-Syringe approach. It is based on the denaturation of serum proteins with acetonitrile followed by salt-induced phase separation upon which the proteins accumulate as a compact layer at the interphase of the solutions. The extract is then separated and diluted in-syringe before being submitted to online coupled UHPLC-MS/MS. A 1 mL glass syringe containing a small stir bar for solution mixing at up to 3000 rpm, was used to deal with sample volumes as small as 100 μL. A sample throughput of 7 h-1 was achieved by performing the chromatographic run and sample preparation procedure in parallel. Linear working ranges were obtained for all analytes between 5 and 100 ng mL-1, with LOD values ranging from 0.4 to 1.5 ng mL-1. Accuracy values in the range of 88.2-106% and high precision of <11% RSD suggest applicability for routine analysis that can be further improved using deuterated standards.
Two operational modes for Lab-In-Syringe automation of direct-immersion single-drop microextraction have been developed and critically compared using lead in drinking water as the model analyte. Dithizone was used in the presence of masking additives as a sensitive chromogenic complexing reagent. The analytical procedure was carried out inside the void of an automatic syringe pump. Normal pump orientation was used to study extraction in a floating drop of a toluene-hexanol mixture. Placing the syringe upside-down allowed the use of a denser-than-water drop of chloroform for the extraction. A magnetic stirring bar was placed inside the syringe for homogenous mixing of the aqueous phase and enabled in-drop stirring in the second configuration while resulting in enhanced extraction efficiency. The use of a syringe as the extraction chamber allowed drop confinement and support by gravitational differences in the syringe inlet. Keeping the stirring rates low, problems related to solvent dispersion such as droplet collection were avoided. With a drop volume of 60 µL, limits of detection of 75 nmol L-1 and 23 nmol L-1 were achieved for the floating drop extraction and the in-drop stirring approaches, respectively. Both methods were characterized by repeatability with RSD typically below 5%, quantitative analyte recoveries, and analyte selectivity achieved by interference masking. Operational differences were critically compared. The proposed methods permitted the routine determination of lead in drinking water to be achieved in less than 6 min.
A double-stage Lab-In-Syringe automated extraction procedure coupled online to HPLC for the determination of four sulfonamides in urine has been developed. Our method is based on homogeneous liquid-liquid extraction at pH 3 using water-miscible acetonitrile with induction of phase separation by the addition of a saturated solution of kosmotropic salts MgSO4 and NaCl. The procedure allowed extraction of the moderately polar model analytes and the use of a solvent that is compatible with the used separation technique. The automated sample preparation system based on the stirring-assisted Lab-In-Syringe approach was coupled on-line with HPLC-UV for the subsequent separation of the sulfonamide antibiotics. To improve both preconcentration factor and extract cleanup, the analytes were trapped at pH 10 in an anion-exchange resin cartridge integrated into the HPLC injection loop thus achieving a double-stage sample clean-up. Analytes were eluted using an acidic HPLC mobile phase in gradient elution mode. Running the analytes separation and the two-step preparation of the following sample in parallel reduced the total time of analysis to mere 13.5 min. Limits of detection ranged from 5.0 to 7.5 μg/L with linear working ranges of 50-5000 μg/L (r2 > 0.9997) and RSD ≤ 5% (n = 6) at a concentration level of 50 μg/L. Average recovery values were 102.7 ± 7.4% after spiking of urine with sulfonamides at concentrations of 2.5 and 5 mg/L followed by 5 times dilution. To the best of our knowledge, the use of Lab-In-Syringe for the automation of coupled homogeneous liquid-liquid extraction and SPE for preparation of the complex matrices suitable for separation techniques is here presented for the first time.
We report on the hyphenation of the modern flow techniques Lab-In-Syringe and Lab-On-Valve for automated sample preparation coupled online with high-performance liquid chromatography. Adopting the bead injection concept on the Lab-On-Valve platform, the on-demand, renewable, solid-phase extraction of five nonsteroidal anti-inflammatory drugs, namely ketoprofen, naproxen, flurbiprofen, diclofenac, and ibuprofen, was carried out as a proof-of-concept. In-syringe mixing of the sample with buffer and standards allowed straightforward pre-load sample modification for the preconcentration of large sample volumes. Packing of ca. 4.4 mg microSPE columns from Oasis HLB® sorbent slurry was performed for each sample analysis using a simple microcolumn adapted to the Lab-On-Valve manifold to achieve low backpressure during loading. Eluted analytes were injected into online coupled HPLC with subsequent separation on a Symmetry C18 column in isocratic mode. The optimized method was highly reproducible, with RSD values of 3.2% to 7.6% on 20 µg L-1 level. Linearity was confirmed up to 200 µg L-1 and LOD values were between 0.06 and 1.98 µg L-1. Recovery factors between 91 and 109% were obtained in the analysis of spiked surface water samples.
Continuous magnetic stirring-assisted dispersive liquid-liquid extraction followed by dispersive backextraction as a novel pre-treatment technique for adaptable and milliliter volumes of environmental samples has been developed. The procedure was automated using the technique "Lab-In-Syringe". The void of the automated syringe pump was used as size-adaptable extraction chamber. By a flow channel in the syringe piston, continuous flow through the syringe void was enabled. 1-Octanol was used as an extractant and dispersed by the action of a magnetic stirring bar, which was placed inside the syringe and driven by an external rotating magnetic field. Extract washing and dispersive backextraction in an alkaline aqueous acceptor phase were carried out after the preceding extraction from the acidified water sample. Analyte determination was achieved using multivariate spectrum analysis. The method was applied to determine priority pollutants, mono-nitrophenols, in surface water and enabled to reach limits of detection for o-, m-, p-nitrophenol (λ = 418, 390, 400 nm, respectively) of 0.14, 0.26, and 0.02 μmol L-1 (19.5, 36.2, and 2.8 μg L-1), respectively. Under optimized conditions, relative standard deviations were generally less than 5% and enrichment factors of o-, m-, p-nitrophenol 19, 25, and 21, respectively, were achieved using sample volumes of up to 24 mL. Average recoveries of o-, m-, p-nitrophenol from spiked surface water were 94, 82, and 92%, respectively. The concentration of humic acid was found 6-times reduced with respect to the analyte. In addition, adding spectral background modeling allowed nitrophenol determination with precision adequate for routine analysis.
- Publikační typ
- časopisecké články MeSH
This article aims to provide an overview on the transition from earlier laboratory automation using analytical flow approaches toward today's applications of flow methodologies, recent developments, and future trends. The article is directed to flow practitioners while serving as a valuable reference to newcomers in the field in providing insight into flow techniques and conceptual differences in operation across the distinct flow generations. In the focus are the recently developed and complementary techniques Lab-On-Valve and Lab-In-Syringe. In the following, a brief comparison of the different application niches and contributions of flow techniques to past and modern analytical chemistry is given, including (i) the development of sample pretreatment approaches, (ii) the potential applicability for in-situ/on-site monitoring of environmental compartments or technical processes, (iii) the ability of miniaturization of laboratory chemistry, (iv) the unique advantages for implementation of kinetic assays, and finally (v) the beneficial online coupling with scanning or separation analytical techniques. We also give a critical comparison to alternative approaches for automation based on autosamplers and robotic systems. Finally, an outlook on future applications and developments including 3D prototyping and specific needs for further improvements is given. Graphical abstract ᅟ.
- Publikační typ
- časopisecké články MeSH
Polymeric nano- and microfibers were tested as potential sorbents for the extraction of five neonicotinoids from natural waters. Nanofibrous mats were prepared from polycaprolactone, polyvinylidene fluoride, polystyrene, polyamide 6, polyacrylonitrile, and polyimide, as well as microfibers of polyethylene, a polycaprolactone nano- and microfiber conjugate, and polycaprolactone microfibers combined with polyvinylidene fluoride nanofibers. Polyimide nanofibers were selected as the most suitable sorbent for these analytes and the matrix. A Lab-In-Syringe system enabled automated preconcentration via online SPE of large sample volumes at low pressure with analyte separation by HPLC. Several mat layers were housed in a solvent filter holder integrated into the injection loop of an HPLC system. After loading 2 mL sample on the sorbent, the mobile phase eluted the retained analytes onto the chromatographic column. Extraction efficiencies of 68.8-83.4% were achieved. Large preconcentration factors ranging from 70 to 82 allowed reaching LOD and LOQ values of 0.4 to 1.7 and 1.2 to 5.5 μg·L-1, respectively. Analyte recoveries from spiked river waters ranged from 53.8% to 113.3% at the 5 μg·L-1 level and from 62.8% to 119.8% at the 20 μg·L-1 level. The developed methodology proved suitable for the determination of thiamethoxam, clothianidin, imidacloprid, and thiacloprid, whereas matrix peak overlapping inhibited quantification of acetamiprid.
- Publikační typ
- časopisecké články MeSH