A plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials. This rapid scoping review aims to analyze literature available from 2012 to 2022 with a focus on clinical trials using biomaterials for direct cardiac repair, i.e., where the intended function of the biomaterial is to enhance the repair of the endocardium, myocardium, epicardium or pericardium. This review included neither biomaterials related to stents and valve repair nor biomaterials serving as vehicles for the delivery of drugs. Surprisingly, the literature search revealed that only 8 different biomaterials mentioned in 23 different studies out of 7038 documents (journal articles, conference abstracts or clinical trial entries) have been tested in clinical trials since 2012. All of these, intended to treat various forms of ischaemic heart disease (heart failure, myocardial infarction), were of natural origin and most used direct injections as their delivery method. This review thus reveals notable gaps between groups of biomaterials tested pre-clinically and clinically. STATEMENT OF SIGNIFICANCE: Rapid scoping review of clinical application of biomaterials for cardiac repair. 7038 documents screened; 23 studies mention 8 different biomaterials only. Biomaterials for repair of endocardium, myocardium, epicardium or pericardium. Only 8 different biomaterials entered clinical trials in the past 10 years. All of the clinically translated biomaterials were of natural origin.
- MeSH
- Biocompatible Materials * chemistry therapeutic use MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.
- MeSH
- COVID-19 * MeSH
- Humans MeSH
- Matrix Metalloproteinase 9 genetics metabolism MeSH
- Intercellular Signaling Peptides and Proteins MeSH
- Mitochondria metabolism MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
OBJECTIVE: To investigate the effect of volatile anesthetics on the rates of postoperative myocardial infarction (MI) and cardiac death after coronary artery bypass graft (CABG). DESIGN: A post hoc analysis of a randomized trial. SETTING: Cardiac surgical operating rooms. PARTICIPANTS: Patients undergoing elective, isolated CABG. INTERVENTIONS: Patients were randomized to receive a volatile anesthetic (desflurane, isoflurane, or sevoflurane) or total intravenous anesthesia (TIVA). The primary outcome was hemodynamically relevant MI (MI requiring high-dose inotropic support or prolonged intensive care unit stay) occurring within 48 hours from surgery. The secondary outcome was 1-year death due to cardiac causes. MEASUREMENTS AND MAIN RESULTS: A total of 5,400 patients were enrolled between April 2014 and September 2017 (2,709 patients randomized to the volatile anesthetics group and 2,691 to TIVA). The mean age was 62 ± 8.4 years, and the median baseline ejection fraction was 57% (50-67), without differences between the 2 groups. Patients in the volatile group had a lower incidence of MI with hemodynamic complications both in the per-protocol (14 of 2,530 [0.6%] v 27 of 2,501 [1.1%] in the TIVA group; p = 0.038) and as-treated analyses (16 of 2,708 [0.6%] v 29 of 2,617 [1.1%] in the TIVA group; p = 0.039), but not in the intention-to-treat analysis (17 of 2,663 [0.6%] v 28 of 2,667 [1.0%] in the TIVA group; p = 0.10). Overall, deaths due to cardiac causes were lower in the volatile group (23 of 2,685 [0.9%] v 40 of 2,668 [1.5%] than in the TIVA group; p = 0.03). CONCLUSIONS: An anesthetic regimen, including volatile agents, may be associated with a lower rate of postoperative MI with hemodynamic complication in patients undergoing CABG. Furthermore, it may reduce long-term cardiac mortality.
- MeSH
- Anesthetics, Inhalation * MeSH
- Anesthetics, Intravenous MeSH
- Myocardial Infarction * drug therapy epidemiology MeSH
- Coronary Artery Bypass methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Postoperative Complications diagnosis epidemiology prevention & control MeSH
- Propofol * MeSH
- Aged MeSH
- Sevoflurane MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
Pervading global narratives suggest that political polarization is increasing, yet the accuracy of such group meta-perceptions has been drawn into question. A recent US study suggests that these beliefs are inaccurate and drive polarized beliefs about out-groups. However, it also found that informing people of inaccuracies reduces those negative beliefs. In this work, we explore whether these results generalize to other countries. To achieve this, we replicate two of the original experiments with 10,207 participants across 26 countries. We focus on local group divisions, which we refer to as fault lines. We find broad generalizability for both inaccurate meta-perceptions and reduced negative motive attribution through a simple disclosure intervention. We conclude that inaccurate and negative group meta-perceptions are exhibited in myriad contexts and that informing individuals of their misperceptions can yield positive benefits for intergroup relations. Such generalizability highlights a robust phenomenon with implications for political discourse worldwide.
- MeSH
- Generalization, Psychological MeSH
- Communication Barriers MeSH
- Culture MeSH
- Humans MeSH
- Politics * MeSH
- Prejudice * prevention & control psychology MeSH
- Rationalization MeSH
- Group Processes * MeSH
- Social Behavior * MeSH
- Social Perception psychology MeSH
- Social Change MeSH
- Sociological Factors MeSH
- Cross-Cultural Comparison MeSH
- Stereotyping MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Volatile (inhaled) anesthetic agents have cardioprotective effects, which might improve clinical outcomes in patients undergoing coronary-artery bypass grafting (CABG). METHODS: We conducted a pragmatic, multicenter, single-blind, controlled trial at 36 centers in 13 countries. Patients scheduled to undergo elective CABG were randomly assigned to an intraoperative anesthetic regimen that included a volatile anesthetic (desflurane, isoflurane, or sevoflurane) or to total intravenous anesthesia. The primary outcome was death from any cause at 1 year. RESULTS: A total of 5400 patients were randomly assigned: 2709 to the volatile anesthetics group and 2691 to the total intravenous anesthesia group. On-pump CABG was performed in 64% of patients, with a mean duration of cardiopulmonary bypass of 79 minutes. The two groups were similar with respect to demographic and clinical characteristics at baseline, the duration of cardiopulmonary bypass, and the number of grafts. At the time of the second interim analysis, the data and safety monitoring board advised that the trial should be stopped for futility. No significant difference between the groups with respect to deaths from any cause was seen at 1 year (2.8% in the volatile anesthetics group and 3.0% in the total intravenous anesthesia group; relative risk, 0.94; 95% confidence interval [CI], 0.69 to 1.29; P = 0.71), with data available for 5353 patients (99.1%), or at 30 days (1.4% and 1.3%, respectively; relative risk, 1.11; 95% CI, 0.70 to 1.76), with data available for 5398 patients (99.9%). There were no significant differences between the groups in any of the secondary outcomes or in the incidence of prespecified adverse events, including myocardial infarction. CONCLUSIONS: Among patients undergoing elective CABG, anesthesia with a volatile agent did not result in significantly fewer deaths at 1 year than total intravenous anesthesia. (Funded by the Italian Ministry of Health; MYRIAD ClinicalTrials.gov number, NCT02105610.).
- MeSH
- Anesthetics, General pharmacology MeSH
- Anesthetics, Intravenous MeSH
- Administration, Inhalation MeSH
- Anesthesia, General MeSH
- Elective Surgical Procedures MeSH
- Anesthesia, Intravenous * MeSH
- Single-Blind Method MeSH
- Kaplan-Meier Estimate MeSH
- Coronary Artery Bypass * MeSH
- Middle Aged MeSH
- Humans MeSH
- Mortality MeSH
- Coronary Artery Disease mortality physiopathology surgery MeSH
- Aged MeSH
- Stroke Volume MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Pragmatic Clinical Trial MeSH
- Randomized Controlled Trial MeSH
- Comparative Study MeSH
Protozoan parasites of the Eimeria genus have undergone extensive speciation and are now represented by a myriad of species that are specialised to different hosts. These species are highly host-specific and usually parasitise single host species, with only few reported exceptions. Doubts regarding the strict host specificity were frequent in the original literature describing coccidia parasitising domestic turkeys. The availability of pure characterised lines of turkey and chicken Eimeria species along with the recently developed quantitative PCR identification of these species allowed to investigate the issue of host specificity using well-controlled cross-transmission experiments. Seven species of gallinaceous birds (Gallus gallus, Meleagris gallopavo, Alectoris rufa, Perdix perdix, Phasianus colchicus, Numida meleagris and Colinus virginianus) were inoculated with six species and strains of turkey Eimeria and six species of chicken coccidia and production of oocysts was monitored. Turkey Eimeria species E. dispersa, E. innocua and E. meleagridis could complete their development in the hosts from different genera or even different families. Comparison of phylogenetic positions of these Eimeria species according to 18S rDNA and COI showed that the phylogeny cannot explain the observed patterns of host specificity. These findings suggest that the adaptation of Eimeria parasites to foreign hosts is possible and might play a significant role in the evolution and diversification of this genus.
- MeSH
- Eimeria classification physiology MeSH
- Phylogeny * MeSH
- Galliformes * MeSH
- Host Specificity * MeSH
- Coccidiosis parasitology veterinary MeSH
- Poultry Diseases parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Plant hormones act as chemical messengers in the regulation of myriads of physiological processes that occur in plants. To date, nine groups of plant hormones have been identified and more will probably be discovered. Furthermore, members of each group may participate in the regulation of physiological responses in planta both alone and in concert with members of either the same group or other groups. The ideal way to study biochemical processes involving these signalling molecules is 'hormone profiling', i.e. quantification of not only the hormones themselves, but also their biosynthetic precursors and metabolites in plant tissues. However, this is highly challenging since trace amounts of all of these substances are present in highly complex plant matrices. Here, we review advances, current trends and future perspectives in the analysis of all currently known plant hormones and the associated problems of extracting them from plant tissues and separating them from the numerous potentially interfering compounds.