OpenAPS
Dotaz
Zobrazit nápovědu
Objective: Safety data on Do-It-Yourself Artificial Pancreas Systems are missing. The most widespread in Europe is the AndroidAPS implementation of the OpenAPS algorithm. We used the UVA/Padova Type 1 Diabetes Simulator to in silico test safety and efficacy of this algorithm in different scenarios. Methods: We tested five configurations of the AndroidAPS algorithm differing in aggressiveness and patient's interaction with the system. All configurations were tested with insulin sensitivity variation of ±30%. The most promising configurations were tested in real-life scenarios: over- and underestimated bolus by 50%, bolus delivered 15 min before meal, and late bolus delivered 15 min after meal. Continuous Glucose Monitoring (CGM) time in ranges (TIRs) metrics were used to assess the glycemic control. Results: In silico testing showed that open-source closed-loop system AndroidAPS works effectively and safely. The best results were reached if AndroidAPS algorithm worked with microboluses and when half of calculated bolus was issued (mean glycemia 131 mg/dL, SD 27 mg/dL, TIR 91%, time between 54 and 70 mg/dL <1%, and low blood glucose index even <1). The meal bolus over- and underestimation as well as late bolus did not affect the TIR and, importantly, the time between 54 and 70 mg/dL. Conclusion: In silico testing proved that AndroidAPS implementation of the OpenAPS algorithm is safe and effective, and it showed a great potential to be tested in prospective home setting study.
- MeSH
- algoritmy MeSH
- bezpečnost vybavení MeSH
- časové faktory MeSH
- diabetes mellitus 1. typu krev farmakoterapie MeSH
- inzulinová rezistence MeSH
- inzulinové infuzní systémy MeSH
- jídla MeSH
- krevní glukóza analýza MeSH
- lidé MeSH
- pankreas umělý * MeSH
- počítačová simulace * MeSH
- testování materiálů metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Diabetes is a heterogeneous group of diseases that share a common trait of elevated blood glucose levels. Insulin lowers this level by promoting glucose utilization, thus avoiding short- and long-term organ damage due to the elevated blood glucose level. A patient with diabetes uses an insulin pump to dose insulin. The pump uses a controller to compute and dose the correct amount of insulin to keep blood glucose levels in a safe range. Insulin-pump controller development is an ongoing process aiming at fully closed-loop control. Controllers entering the market must be evaluated for safety. We propose an evaluation method that exploits an FDA-approved diabetic patient simulator. The method evaluates a Cartesian product of individual insulin-pump parameters with a fine degree of granularity. As this is a computationally intensive task, the simulator executes on a distributed cluster. We identify safe and risky combinations of insulin-pump parameter settings by applying the binomial model and decision tree to this product. As a result, we obtain a tool for insulin-pump settings and controller safety assessment. In this paper, we demonstrate the tool with the Low-Glucose Suspend and OpenAPS controllers. For average ± standard deviation, LGS and OpenAPS exhibited 1.7 ± 0.6% and 3.2 ± 1.8% of local extrema (i.e., good insulin-pump settings) out of all the entire Cartesian products, respectively. A continuous region around the best-discovered settings (i.e., the global extremum) of the insulin-pump settings spread across 4.0 ± 1.1% and 4.1 ± 1.3% of the Cartesian products, respectively.
- MeSH
- diabetes mellitus 1. typu * MeSH
- hypoglykemika terapeutické užití MeSH
- inzulin terapeutické užití MeSH
- inzulinové infuzní systémy MeSH
- krevní glukóza * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH