Pĕtrošová, Helena* Dotaz Zobrazit nápovědu
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n=11), transport (n=6), membrane structure (n=5), stress response (n=2), DNA damage repair (n=1), and other processes (n=3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.
- MeSH
- antiinfekční látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- bakteriální proteiny genetika MeSH
- biologický transport MeSH
- ethidium farmakologie MeSH
- fenotyp MeSH
- genová knihovna MeSH
- inzerční mutageneze MeSH
- Leptospira genetika fyziologie MeSH
- membránové transportní proteiny genetika MeSH
- mikrobiální testy citlivosti MeSH
- operon genetika MeSH
- tolerance léku genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
From January 2011 to December 2013, a total of 262 samples, from 188 patients suspected of having syphilis were tested for the presence of treponemal DNA by PCR amplification of five chromosomal loci, including the polA (TP0105), tmpC (TP0319), TP0136, TP0548, and 23S rRNA genes. Altogether, 146 samples from 103 patients were PCR positive for treponemal DNA. A set of 81 samples from 62 PCR-positive patients were typeable, and among them, nine different genotypes were identified. Compared to a previous study in the Czech Republic during 2004 to 2010, the number of genotypes detected among syphilis patients in a particular year increased to six in both 2012 and 2013, although they were not the same six. The proportion of macrolide-resistant clinical isolates in this 3-year study was 66.7%.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální geny MeSH
- bakteriální léková rezistence * MeSH
- DNA bakterií chemie genetika MeSH
- dospělí MeSH
- genetická variace * MeSH
- genotyp MeSH
- lidé MeSH
- makrolidy farmakologie MeSH
- molekulární typizace * MeSH
- prevalence MeSH
- RNA ribozomální 23S genetika MeSH
- syfilis epidemiologie mikrobiologie MeSH
- Treponema pallidum klasifikace účinky léků genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, is a highly clonal bacterium showing minimal genetic variability in the genome sequence of individual strains. Nevertheless, genetically characterized syphilis strains can be clearly divided into two groups, Nichols-like strains and SS14-like strains. TPA Nichols and SS14 strains were completely sequenced in 1998 and 2008, respectively. Since publication of their complete genome sequences, a number of sequencing errors in each genome have been reported. Therefore, we have resequenced TPA Nichols and SS14 strains using next-generation sequencing techniques. METHODOLOGY/PRINCIPAL FINDINGS: The genomes of TPA strains Nichols and SS14 were resequenced using the 454 and Illumina sequencing methods that have a combined average coverage higher than 90x. In the TPA strain Nichols genome, 134 errors were identified (25 substitutions and 109 indels), and 102 of them affected protein sequences. In the TPA SS14 genome, a total of 191 errors were identified (85 substitutions and 106 indels) and 136 of them affected protein sequences. A set of new intrastrain heterogenic regions in the TPA SS14 genome were identified including the tprD gene, where both tprD and tprD2 alleles were found. The resequenced genomes of both TPA Nichols and SS14 strains clustered more closely with related strains (i.e. strains belonging to same syphilis treponeme subcluster). At the same time, groups of Nichols-like and SS14-like strains were found to be more distantly related. CONCLUSION/SIGNIFICANCE: We identified errors in 11.5% of all annotated genes and, after correction, we found a significant impact on the predicted proteomes of both Nichols and SS14 strains. Corrections of these errors resulted in protein elongations, truncations, fusions and indels in more than 11% of all annotated proteins. Moreover, it became more evident that syphilis is caused by treponemes belonging to two separate genetic subclusters.
- MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom genetika MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA metody MeSH
- sekvenční seřazení MeSH
- syfilis genetika parazitologie MeSH
- Treponema pallidum genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, and Treponema pallidum ssp. pertenue (TPE), the causative agent of yaws, are closely related spirochetes causing diseases with distinct clinical manifestations. The TPA Mexico A strain was isolated in 1953 from male, with primary syphilis, living in Mexico. Attempts to cultivate TPA Mexico A strain under in vitro conditions have revealed lower growth potential compared to other tested TPA strains. METHODOLOGY/PRINCIPAL FINDINGS: The complete genome sequence of the TPA Mexico A strain was determined using the Illumina sequencing technique. The genome sequence assembly was verified using the whole genome fingerprinting technique and the final sequence was annotated. The genome size of the Mexico A strain was determined to be 1,140,038 bp with 1,035 predicted ORFs. The Mexico A genome sequence was compared to the whole genome sequences of three TPA (Nichols, SS14 and Chicago) and three TPE (CDC-2, Samoa D and Gauthier) strains. No large rearrangements in the Mexico A genome were found and the identified nucleotide changes occurred most frequently in genes encoding putative virulence factors. Nevertheless, the genome of the Mexico A strain, revealed two genes (TPAMA_0326 (tp92) and TPAMA_0488 (mcp2-1)) which combine TPA- and TPE- specific nucleotide sequences. Both genes were found to be under positive selection within TPA strains and also between TPA and TPE strains. CONCLUSIONS/SIGNIFICANCE: The observed mosaic character of the TPAMA_0326 and TPAMA_0488 loci is likely a result of inter-strain recombination between TPA and TPE strains during simultaneous infection of a single host suggesting horizontal gene transfer between treponemal subspecies.
- MeSH
- DNA bakterií chemie genetika MeSH
- frambézie mikrobiologie MeSH
- genom bakteriální * MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce MeSH
- rekombinace genetická MeSH
- sekvenční analýza DNA * MeSH
- syfilis mikrobiologie MeSH
- syntenie MeSH
- Treponema pallidum genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Mexiko MeSH
Treponema pallidum strains are closely related at the genome level but cause distinct diseases. Subspecies pallidum (TPA) is the causative agent of syphilis, subspecies pertenue (TPE) causes yaws while subspecies endemicum (TEN) causes bejel (endemic syphilis). Compared to the majority of treponemal genomic regions, several chromosomal loci were found to be more diverse. To assess genetic variability in diverse genomic positions, we have selected (based on published genomic data) and sequenced five variable loci, TP0304, TP0346, TP0488, TP0515 and TP0558, in 19 reference Treponema pallidum strains including all T. pallidum subspecies (TPA, TPE and TEN). Results of this multilocus analysis divided syphilitic isolates into two groups: SS14-like and Nichols-like. The SS14-like group is comprised of SS14, Grady, Mexico A and Philadelphia 1 strains. The Nichols-like group consisted of strains Nichols, Bal 73-1, DAL-1, MN-3, Philadelphia 2, Haiti B and Madras. The TP0558 locus was selected for further studies because it clearly distinguished between the SS14- and Nichols-like groups and because the phylogenetic tree derived from the TP0558 locus showed the same clustering pattern as the tree constructed from whole genome sequences. In addition, TP0558 was shown as the only tested locus that evolved under negative selection within TPA strains. Sequencing of a short fragment (573bp) of the TP0558 locus in a set of 25 clinical isolates from 22 patients collected in the Czech Republic during 2012-2013 revealed that clinical isolates follow the SS14- and Nichols-like distribution.
- MeSH
- dospělí MeSH
- genotyp MeSH
- lidé středního věku MeSH
- lidé MeSH
- molekulární epidemiologie MeSH
- multilokusová sekvenční typizace MeSH
- novorozenec MeSH
- shluková analýza MeSH
- syfilis epidemiologie mikrobiologie MeSH
- Treponema pallidum klasifikace genetika izolace a purifikace MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH