Ranjan, Priya* Dotaz Zobrazit nápovědu
The genus Geobacillus is one of the most important genera which mainly comprises gram-positive thermophilic bacterial strains including obligate aerobes, denitrifiers and facultative anaerobes having capability of endospore formation as well. The genus Geobacillus is widely distributed in nature and mostly abundant in extreme locations such as cool soils, hot springs, hydrothermal vents, marine trenches, hay composts and dairy plants. Due to plasticity towards environmental adaptation, the Geobacillus sp. shows remarkable genome diversification and acquired many beneficial properties, which facilitates their exploitation for many biotechnological applications. Many thermophiles are of biotechnological importance and having considerable interest in commercial applications for the production of industrially important products. Recently, due to catabolic versatility especially in the degradation of hemicellulose and starch containing agricultural waste and rapid growth rates, these microorganisms show potential for the production of biofuels, thermostable enzymes and bioremediation. This review mainly summarizes the status of Geobacillus sp. including its notable properties, biotechnological studies and its potential application in the production of industrially important products.
- MeSH
- biodegradace MeSH
- biopaliva MeSH
- biotechnologie MeSH
- Geobacillus * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.
- MeSH
- alely MeSH
- buněčná stěna genetika MeSH
- celulosa metabolismus MeSH
- fenotyp MeSH
- genetická vazba MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lignin biosyntéza MeSH
- lod skóre MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- Populus genetika MeSH
- rostlinné geny * MeSH
- rostlinné proteiny chemie genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- transkripční faktory chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- MeSH
- autofagie * fyziologie MeSH
- biotest metody normy MeSH
- lidé MeSH
- počítačová simulace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- směrnice MeSH
Stone -- 76 Management of Pediatric Severe Traumatic -- Brain Injury 911 -- Christina Sarris • Manish Ranjan Domagoj Coric -- 149 Management of Degenerative Lumbar Stenosis -- and Spondylolisthesis 1757 -- Priyal
Seventh edition 2 svazky : ilustrace, tabulky ; 28 cm
The publication focuses on the current techniques in neurosurgery. Written for professional public.
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- neurochirurgie
- NLK Publikační typ
- kolektivní monografie