Soderstrom, T*
Dotaz
Zobrazit nápovědu
This study investigated the i) kinetics, and ii) proportion of photolysis of 30 relatively stable active pharmaceutical ingredients (APIs) during artificial UV irradiation for 28 d in ammonium acetate buffer, filtered and unfiltered river water. Buffer was included to control removal kinetics under stable pH conditions and without particulate matter. Dark controls were used to determine removal due to other processes than photolysis and calculate the proportion of photolysis of the total removal. The removal of each API in each matrix was determined using online solid phase extraction/liquid chromatography tandem mass spectrometry (online SPE/LC-MS/MS). Most APIs transformed during the 28 d of UV irradiation and the dark controls showed that photolysis was the major removal process for the majority of the APIs studied. The half-lives ranged from 6 h (amitriptyline) in unfiltered river water to 884 h (37 d, carbamazepine) in buffer. In unfiltered river water, the proportion of APIs with short half-lives (<48 h) was much higher (29%) than in the other matrices (4%), probably due to additional organic carbon, which could have promoted indirect photolysis. Furthermore, two APIs, memantine and fluconazole, were stable in all three matrices, while alprazolam was stable in buffer and unfiltered river water and four additional APIs were stable in buffer. Considering the relatively long-term UV-exposure, this study enabled the investigation of environmentally relevant half-lives in natural waters. Many APIs showed high persistence, which is environmentally concerning and emphasizes the importance of further studies on their environmental fate and effects.
- MeSH
- časové faktory MeSH
- chemické látky znečišťující vodu izolace a purifikace účinky záření MeSH
- extrakce na pevné fázi metody MeSH
- fotolýza účinky záření MeSH
- kinetika MeSH
- léčivé přípravky izolace a purifikace účinky záření MeSH
- poločas MeSH
- regenerace a remediace životního prostředí metody MeSH
- řeky chemie MeSH
- stabilita léku MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- ultrafialové záření * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
Anti-influenza drugs constitute a key component of pandemic preparedness plans against influenza. However, the occurrence of such drugs in water environments, the potential of resistance development in the natural hosts, and the risk for transmission of antiviral resistance to humans call for measures to increase removal in wastewater treatment plants (WWTPs). In this study, removal of three anti-influenza drugs; amantadine (AM), oseltamivir carboxylate (OC) and zanamivir (ZA), and formation/removal of their transformation products during ozonation of wastewater effluents from two Swedish WWTPs in Uppsala and Stockholm were studied. The removal profile of target antivirals and formation/removal of their transformation products were studied by liquid chromatography/high resolution mass spectrometry. 3.5 h of ozone exposure (total dose of ozone 5.95 g) led to complete removal of the three anti-influenza drugs with a degradation in the following order ZA > OC > AM. Two, five and one transformation products were identified and semi-quantified for AM, OC and ZA, respectively. Increasing and later decreasing transformation products concentration followed the decrease in concentration of target compounds. All transformation products detected, except one of AM in wastewater from Stockholm WWTP, were removed at the end of the experiment. The removal efficiency was higher for all studied compounds in wastewater from Uppsala WWTP, which had lower TOC and COD values, less phosphorus, and also higher pH in the water. Ozonation thus offers multiple benefits through its potential to degrade influenza antivirals, hence decrease the risk of environmental resistance development, in addition to degrading other pharmaceuticals and resistant microorganisms.
- MeSH
- antivirové látky chemie MeSH
- chemické látky znečišťující vodu chemie MeSH
- chřipka lidská farmakoterapie MeSH
- hmotnostní spektrometrie MeSH
- kinetika MeSH
- lidé MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda chemie MeSH
- ozon chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Wild waterfowl is the natural reservoir of influenza A virus (IAV); hosted viruses are very variable and provide a source for genetic segments which can reassort with poultry or mammalian adapted IAVs to generate novel species crossing viruses. Additionally, wild waterfowl act as a reservoir for highly pathogenic IAVs. Exposure of wild birds to the antiviral drug oseltamivir may occur in the environment as its active metabolite can be released from sewage treatment plants to river water. Resistance to oseltamivir, or to other neuraminidase inhibitors (NAIs), in IAVs of wild waterfowl has not been extensively studied. AIM AND METHODS: In a previous in vivo Mallard experiment, an influenza A(H6N2) virus developed oseltamivir resistance by the R292K substitution in the neuraminidase (NA), when the birds were exposed to oseltamivir. In this study we tested if the resistance could be maintained in Mallards without drug exposure. Three variants of resistant H6N2/R292K virus were each propagated during 17 days in five successive pairs of naïve Mallards, while oseltamivir exposure was decreased and removed. Daily fecal samples were analyzed for viral presence, genotype and phenotype. RESULTS AND CONCLUSION: Within three days without drug exposure no resistant viruses could be detected by NA sequencing, which was confirmed by functional NAI sensitivity testing. We conclude that this resistant N2 virus could not compete in fitness with wild type subpopulations without oseltamivir drug pressure, and thus has no potential to circulate among wild birds. The results of this study contrast to previous observations of drug induced resistance in an avian H1N1 virus, which was maintained also without drug exposure in Mallards. Experimental observations on persistence of NAI resistance in avian IAVs resemble NAI resistance seen in human IAVs, in which resistant N2 subtypes do not circulate, while N1 subtypes with permissive mutations can circulate without drug pressure. We speculate that the phylogenetic group N1 NAs may easier compensate for NAI resistance than group N2 NAs, though further studies are needed to confirm such conclusions.
- MeSH
- inhibitory enzymů farmakologie MeSH
- kachny * virologie MeSH
- mutace * MeSH
- neuraminidasa genetika MeSH
- oseltamivir farmakologie MeSH
- ptačí chřipka u ptáků virologie MeSH
- virová léková rezistence * MeSH
- virus chřipky A genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Zanamivir (Za) is a highly polar and hydrophilic antiviral drug used for the treatment of influenza A viruses. Za has been detected in rivers of Japan and it's environmental occurrence has the risk of inducing antiviral resistant avian influenza viruses. In this study, a rapid automated online solid phase extraction liquid chromatography method using bonded zwitterionic stationary phases and tandem mass spectrometry (SPE/LC-MS/MS) for trace analysis of Za was developed. Furthermore, an internal standard (IS) calibration method capable of quantifying Za in Milli-Q, surface water, sewage effluent and sewage influent was evaluated. Optimum pre-extraction sample composition was found to be 95/5 v/v acetonitrile/water sample and 1% formic acid. The developed method showed acceptable linearities (r(2)≥0.994), filtration recovery (≥91%), and intra-day precisions (RSD≤16%), and acceptable and environmentally relevant LOQs (≤20ngL(-1)). Storage tests showed no significant losses of Za during 20 days and +4/-20°C (≤12%) with the exception of influent samples, which should be kept at -20°C to avoid significant Za losses. The applicability of the method was demonstrated in a study on phototransformation of Za in unfiltered and filtered surface water during 28 days of artificial UV irradiation exposure. No significant (≤12%) phototransformation was found in surface water after 28 days suggesting a relatively high photostability of Za and that Za should be of environmental concern.
- MeSH
- acetonitrily chemie MeSH
- antivirové látky analýza chemie MeSH
- chemické látky znečišťující vodu analýza chemie MeSH
- chromatografie kapalinová metody MeSH
- extrakce na pevné fázi metody MeSH
- formiáty chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- on-line systémy MeSH
- řeky chemie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- ultrafialové záření MeSH
- zanamivir analýza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Japonsko MeSH
- MeSH
- antifibrinolytika terapeutické užití MeSH
- krvácení farmakoterapie etiologie MeSH
- kyselina tranexamová terapeutické užití MeSH
- lidé MeSH
- ozbrojené síly * MeSH
- rány a poranění komplikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH
The concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir's active metabolite, oseltamivir carboxylate (OC), were measured weekly at 21 locations within the River Thames catchment in England during the month of November 2009, the autumnal peak of the influenza A[H1N1]pdm09 pandemic. The aim was to quantify the pharmaceutical response to the pandemic and compare this to drug use during the late pandemic (March 2010) and the inter-pandemic periods (May 2011). A large and small wastewater treatment plant (WWTP) were sampled in November 2009 to understand the differential fate of the analytes in the two WWTPs prior to their entry in the receiving river and to estimate drug users using a wastewater epidemiology approach. Mean hourly OC concentrations in the small and large WWTP's influent were 208 and 350 ng/L (max, 2070 and 550 ng/L, respectively). Erythromycin was the most concentrated antibiotic measured in Benson and Oxford WWTPs influent (max=6,870 and 2,930 ng/L, respectively). Napthazoline and oxymetazoline were the most frequently detected and concentrated decongestant in the Benson WWTP influent (1650 and 67 ng/L) and effluent (696 and 307 ng/L), respectively, but were below detection in the Oxford WWTP. OC was found in 73% of November 2009's weekly river samples (max=193 ng/L), but only in 5% and 0% of the late- and inter-pandemic river samples, respectively. The mean river concentration of each antibiotic during the pandemic largely fell between 17-74 ng/L, with clarithromycin (max=292 ng/L) and erythromycin (max=448 ng/L) yielding the highest single measure. In general, the concentration and frequency of detecting antibiotics in the river increased during the pandemic. OC was uniquely well-suited for the wastewater epidemiology approach owing to its nature as a prodrug, recalcitrance and temporally- and spatially-resolved prescription statistics.
- MeSH
- antibakteriální látky chemie MeSH
- antivirové látky chemie MeSH
- chemické látky znečišťující vodu MeSH
- monitorování životního prostředí MeSH
- nosní dekongestiva chemie MeSH
- odpadní voda chemie MeSH
- řeky * MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Anglie MeSH
Principles and techniques in gynecologic surgery
[1st ed.] XIX, 245 s. : fotogr., obr., tab. ; 28 cm
Nils SÖDERSTRÖM
159 s. : obr.(část.barev.), bibl.