hOCT2 Dotaz Zobrazit nápovědu
Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug-drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir.
- Publikační typ
- časopisecké články MeSH
Amphotericin B (AmB) is excreted via the renal excretion route. This excretion process may result in nephrotoxicity. However, relevant information on the precise renal excretion mechanisms is not available. The aim of the study was to analyze the possible interaction of AmB or its prodrug AmB deoxycholate (AmB-DOC) with the typical renal organic anion transporters (OATs) and organic cation transporters (OCTs), using cellular and organ models. The relevant transport systems were then investigated in terms of the drug-drug interactions of AmB-DOC with antivirals that might potentially be used concomitantly. To analyze the renal excretion mechanisms of [(3)H]AmB, perfused rat kidney was employed. HeLa and MDCK II cells transiently transfected with human OAT1 (hOAT1) or hOCT2 were used as the cellular models. A significant tubular secretion of AmB was demonstrated in the perfused rat kidney. The cellular studies performed confirmed the active transport of AmB into cells. AmB did not interact with hOAT1 but strongly inhibited hOCT2. In contrast, AmB-DOC inhibited both hOAT1 and hOCT2. However, [(3)H]AmB cellular uptake by hOAT1 and hOCT2 was not found. AmB-DOC interacted significantly with adefovir, tenofovir, and cidofovir in hOAT1-transfected cells at supratherapeutic concentrations. In conclusion, the significant potency of AmB and AmB-DOC for inhibiting the transporters was demonstrated in this study. The secretion of AmB in the renal tubules is likely not related to the transporters here, since the drug was not proven to be a substrate for them. Drug-drug interactions of AmB and the antivirals used in this study on the investigated transporters are not probable.
- MeSH
- amfotericin B metabolismus MeSH
- antivirové látky metabolismus MeSH
- buněčné linie MeSH
- fixní kombinace léků MeSH
- HeLa buňky MeSH
- krysa rodu rattus MeSH
- kyselina deoxycholová metabolismus MeSH
- ledviny metabolismus MeSH
- lékové interakce MeSH
- lidé MeSH
- potkani Wistar MeSH
- protein 1 přenášející organické anionty metabolismus MeSH
- proteiny přenášející organické kationty metabolismus MeSH
- psi MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Radiolabeled receptor-targeting peptides are a useful tool for the diagnostic imaging and radiotherapy of some malignancies. However, the retention of radioactivity in the kidney may result in renal radiotoxic injury. This study seeks to evaluate the role of endocytic receptor megalin, renal SLC influx transporters and fluid phase endocytosis (FPE) in the cellular accumulation of radiolabeled peptides. METHODS: In vitro transport cellular studies using megalin ligands (RAP, albumin), fluid phase endocytosis (FPE) inhibitor rottlerin and low temperature were employed to evaluate the transport mechanisms of the peptides. Cells transfected with hOAT1 or hOCT2 were used to analyze the role of these SLC transporters. Somatostatin ((177)Lu-DOTA-[Tyr(3)]octreotate, (177)Lu-DOTA-[1-Nal(3)]octreotide), gastrin ((177)Lu-DOTA-sargastrin) and bombesin ((177)Lu-DOTA-[Pro(1),Tyr(4)]bombesin, (177)Lu-DOTA-[Lys(3)]bombesin, (177)Lu-PCTA-[Lys(3)]bombesin) analogues were involved in the study. RESULTS: RAP, albumin and low temperature decreased the accumulation of all the studied peptides significantly. With one exception, rottlerin caused the concentration dependent inhibition of the cellular accumulation of the radiopeptides. No significant differences in the uptake of the peptides between the control cells and those transfected with hOAT1 or hOCT2 were observed. CONCLUSION: The study showed that active transport mechanisms are decisive for the cellular accumulation in all tested (177)Lu-labeled somatostatin, gastrin and bombesin analogues. Besides receptor-mediated endocytosis by megalin, FPE participates significantly in the uptake. The tested types of renal SLC transporters are not involved in this process.
- MeSH
- biologický transport MeSH
- bombesin chemie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- endocytóza * MeSH
- gastriny chemie metabolismus MeSH
- HeLa buňky MeSH
- izotopové značení MeSH
- lidé MeSH
- lutecium * MeSH
- peptidové hormony chemie metabolismus MeSH
- prasata MeSH
- přenašeče organických aniontů nezávislé na sodíku metabolismus MeSH
- protein 1 přenášející organické anionty metabolismus MeSH
- somatostatin chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Members of acyclic nucleoside phosphonates (ANPs) possess antiviral and antiproliferative activities. However, several clinically important ANPs may cause renal injury, most likely due to their active accumulation in the renal tubular cells. The goal of this study was to investigate in vitro relationships between the affinity of several structurally related potent ANPs to selected human transporters and their cytotoxicity. SLC (solute carrier family) transporters (hOAT1, hOCT2, hCNT2, hCNT3) and ABC (ATP-binding cassette) transporters (MDR1, BCRP), which are typically expressed in the kidney, were included in the study. The transport and toxic parameters of the tested compounds were compared to those of two clinically approved ANPs, adefovir and tenofovir. Transport studies with transiently transfected cells were used as the main method in the experiments. Most of the ANPs studied showed the potency to interact with hOAT1. GS-9191, a double prodrug of PMEG, displayed an affinity for hOAT1 comparable with that of adefovir and tenofovir. No significant interaction of the tested ANPs with hOCT2, hCNT2 and hCNT3 was observed. Only GS-9191 was found to be a strong inhibitor for both MDR1 and BCRP. PMEO-DAPy showed the potency to interact with MDR1. Most of the tested substances caused a significant decrease in cellular viability in the cells transfected with hOAT1. Only with the exclusion of GS-9191, a relatively lipophilic compound, did the in vitro cytotoxicity of the ANPs closely correspond to their potential to interact with hOAT1. The increased cytotoxicity of the studied ANPs found in OAT1 transfected cells was effectively reduced by OAT inhibitors probenecid and quercetin. The higher cytotoxicity of the compounds with affinity to hOAT1 proved in the inhibitory experiments evidences that ANPs are not only inhibitors but also substrates of hOAT1. Any clear relationship between the potency of ANPs to inhibit the studied efflux transporters and their cytotoxicity was not demonstrated. In conclusion, the study documented that among the studied transporters hOAT1 seems to be the decisive determinant for renal handling in most of the tested ANPs. This transporter may also play an important role in the mechanism of their potential cytotoxic effects. These facts are in good accordance with previous findings in the clinically used ANPs.
- MeSH
- antivirové látky farmakologie MeSH
- buňky MDCK MeSH
- HeLa buňky MeSH
- ledviny metabolismus MeSH
- lidé MeSH
- membránové transportní proteiny metabolismus MeSH
- organofosfáty farmakologie MeSH
- psi MeSH
- puriny farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH