Equids may be infected by zoonotic Leishmania spp., including Leishmania infantum, in regions where canine leishmaniasis (CanL) is endemic, and Leishmania martiniquensis, which has been reported in horses from Central Europe. This study was designed to evaluate the occurrence of both Leishmania spp. among equids living in CanL endemic areas of Italy, as well as to identify dipteran vectors from the same habitats. From March to October 2023, blood, serum and tissue samples from skin lesions were collected from equids (n = 98; n = 56 donkeys and n = 42 horses) living in Italy, as well as sand flies and biting midges. Blood samples (n = 98) and skin lesions (n = 56) were tested for Leishmania spp. by conventional and real time PCRs and sera were tested by immunofluorescence antibody tests (IFAT) for both L. infantum and L. martiniquensis. Insects were morphologically identified, and female specimens (n = 268 sand flies, n = 7 biting midges) analyzed for Leishmania DNA, as well as engorged sand flies (n = 16) for blood-meal detection. Two animals with skin lesions (i.e., one donkey and one horse) scored positive for Leishmania spp. DNA, and 19 animals (i.e., 19.4%; n = 13 donkeys and n = 6 horses) were seropositive for L. infantum, with five of them also for L. martiniquensis. Most seropositive animals had no dermatological lesions (i.e., 68.4%) while both animals molecularly positive for Leishmania spp. scored seronegative. Of the 356 sand flies collected, 12 females (i.e., n = 8 Sergentomyia minuta; n = 3 Phlebotomus perniciosus, n = 1 Phlebotomus perfiliewi) were positive for Leishmania spp. DNA, and one out of seven biting midges collected was DNA-positive for L. infantum. Moreover, engorged sand flies scored positive for human and equine DNA. Data suggest that equids living in CanL endemic areas are exposed to Leishmania spp., but their role in the circulation of the parasite needs further investigations.
- MeSH
- Ceratopogonidae parazitologie MeSH
- endemické nemoci veterinární MeSH
- Equidae * parazitologie MeSH
- hmyz - vektory * parazitologie MeSH
- koně parazitologie MeSH
- Leishmania infantum izolace a purifikace genetika MeSH
- Leishmania * izolace a purifikace genetika klasifikace MeSH
- leishmanióza * veterinární epidemiologie parazitologie přenos MeSH
- nemoci koní parazitologie epidemiologie MeSH
- nemoci psů * parazitologie epidemiologie přenos MeSH
- psi MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie MeSH
Leishmania parasites, causative agents of leishmaniasis, are currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania and Mundinia. The recently established subgenus Mundinia has a wide geographical distribution and contains five species, three of which have the potential to infect and cause disease in humans. While the other Leishmania subgenera are transmitted exclusively by phlebotomine sand flies (Diptera: Psychodidae), natural vectors of Mundinia remain uncertain. This study investigates the potential of sand flies and biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to transmit Leishmania parasites of the subgenus Mundinia. Sand flies (Phlebotomus argentipes, P. duboscqi and Lutzomyia migonei) and Culicoides biting midges (Culicoides sonorensis) were exposed to five Mundinia species through a chicken skin membrane and dissected at specific time intervals post bloodmeal. Potentially infected insects were also allowed to feed on ear pinnae of anaesthetized BALB/c mice and the presence of Leishmania DNA was subsequently confirmed in the mice using polymerase chain reaction analyses. In C. sonorensis, all Mundinia species tested were able to establish infection at a high rate, successfully colonize the stomodeal valve and produce a higher proportion of metacyclic forms than in sand flies. Subsequently, three parasite species, L. martiniquensis, L. orientalis and L. sp. from Ghana, were transmitted to the host mouse ear by C. sonorensis bite. In contrast, transmission experiments entirely failed with P. argentipes, although colonisation of the stomodeal valve was observed for L. orientalis and L. martiniquensis and metacyclic forms of L. orientalis were recorded. This laboratory-based transmission of Mundinia species highlights that Culicoides are potential vectors of members of this ancestral subgenus of Leishmania and we suggest further studies in endemic areas to confirm their role in the lifecycles of neglected pathogens.
- MeSH
- Ceratopogonidae parazitologie MeSH
- hmyz - vektory parazitologie MeSH
- Leishmania * MeSH
- leishmanióza přenos MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Strain CS-1T, a novel facultative anaerobic bacterium, was isolated from the larval gastrointestinal tract of the biting midge, Culicoides sonorensis, a vector of the epizootic haemorrhagic disease virus and the bluetongue virus. Cells were Gram-stain-positive, non-motile, non-spore-forming, pleomorphic rods. Optimal growth occurred at pH 7.5 and 37 °C. The G+C content of the genomic DNA was 38.3 mol%, estimated by using HPLC. The dominant cellular fatty acids were C14 : 0 (45.9 %) and C16 : 0 (26.6 %). The polar lipid profile comprised glycolipids, diphosphatidylglycerol, phospholipids and phosphoglycolipids. Respiratory quinones were not detected. Strain CS-1T had very low 16S rRNA gene similarity to members of the phylum Firmicutes: Macrococcus canis KM45013T (85 % similarity) and Turicibacter sanguinis MOL361T (88 % similarity). Phylogenetic analysis based on 16S rRNA, rpoB, gyrB genes, and conserved protein sequences of the whole genome revealed that strain CS-1T was related to members of the classes Bacilli and Erysipelotrichia within the phylum Firmicutes. Furthermore, average nucleotide identity and digital DNA-DNA hybridization analyses of the whole genome revealed very low sequence similarity to species of Bacilli and Erysipelotrichaceae (Macrococcus canis KM45013T and Turicibacter sp. H121). These results indicate that strain CS-1T belongs to the phylum Firmicutes and represents a new species of a novel genus, family, order and class. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, we propose the novel taxon Culicoidibacter larvae gen. nov., sp. nov. with the type strain CS-1T (=CCUG 71726T=DSM 106607T) within the hereby new proposed novel family Culicoidibacteraceae fam. nov., new order Culicoidibacaterales ord. nov. and new class Culicoidibacteria classis nov. in the phylum Firmicutes.
- MeSH
- Ceratopogonidae mikrobiologie MeSH
- DNA bakterií genetika MeSH
- druhová specificita MeSH
- Firmicutes klasifikace genetika MeSH
- fylogeneze * MeSH
- gastrointestinální trakt mikrobiologie MeSH
- larva mikrobiologie MeSH
- mastné kyseliny chemie MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- techniky typizace bakterií MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The prime significance of species belonging to the genus Culicoides Latreille, 1809 (Diptera: Ceratopogonidae) is their ability to transmit viruses such as bluetongue virus (BTV) to wild and domestic ruminants. Prior to 1998, BTV was considered exotic in Europe, but according to recent history of its outbreaks, it has become endemic in southern and eastern European countries circulating beyond its expected historical limits, into the Balkan region. The wind-borne long-distance dispersal of Culicoides spp. over water bodies and local spreading between farms emphasize the necessity of filling in the information gaps regarding vector species distribution. In most Balkan countries, data on Culicoides fauna and species distribution are lacking, or information is old and scarce. RESULTS: During this study, 8586 specimens belonging to 41 species were collected. We present the first faunistic data on Culicoides species in the former Yugoslav Republic of Macedonia (FYROM), Kosovo, Montenegro and Serbia. For other countries (Bosnia and Herzegovina, Bulgaria and Croatia), all historical records were compiled for the first time and then expanded with our findings to various extents. In all countries, confirmed or suspected BTV vector species belonging to the subgenera Avaritia and Culicoides were collected. The total number of species sampled during our field collections was 20 in Bosnia and Herzegovina (15 new records), 10 in Bulgaria (2 new records), 10 in Croatia (5 new records), 13 in FYROM, 9 in Kosovo, 15 in Montenegro, and 28 in Serbia. Of these, 14 species were registered for the first time in this part of the Balkans. CONCLUSIONS: This paper provides the first data about Culicoides fauna in FYROM, Kosovo, Montenegro and Serbia, as well as new records and an update on the checklists for Bosnia and Herzegovina, Bulgaria and Croatia. These findings provide preliminary insights into the routes of BTV introduction and spreading within the Balkans, and present a valuable contribution to further research related to Culicoides-borne diseases in Europe.
- MeSH
- Ceratopogonidae klasifikace fyziologie MeSH
- rozšíření zvířat * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- východní Evropa MeSH
BACKGROUND: Although avian trypanosomes are widespread parasites, the knowledge of their vectors is still incomplete. Despite biting midges (Diptera: Ceratopogonidae) are considered as potential vectors of avian trypanosomes, their role in transmission has not been satisfactorily elucidated. Our aim was to clarify the potential of biting midges to sustain the development of avian trypanosomes by testing their susceptibility to different strains of avian trypanosomes experimentally. Moreover, we screened biting midges for natural infections in the wild. RESULTS: Laboratory-bred biting midges Culicoides nubeculosus were highly susceptible to trypanosomes from the Trypanosoma bennetti and T. avium clades. Infection rates reached 100%, heavy infections developed in 55-87% of blood-fed females. Parasite stages from the insect gut were infective for birds. Moreover, midges could be infected after feeding on a trypanosome-positive bird. Avian trypanosomes can thus complete their cycle in birds and biting midges. Furthermore, we succeeded to find infected blood meal-free biting midges in the wild. CONCLUSIONS: Biting midges are probable vectors of avian trypanosomes belonging to T. bennetti group. Midges are highly susceptible to artificial infections, can be infected after feeding on birds, and T. bennetti-infected biting midges (Culicoides spp.) have been found in nature. Moreover, midges can be used as model hosts producing metacyclic avian trypanosome stages infective for avian hosts.
- MeSH
- Ceratopogonidae anatomie a histologie parazitologie MeSH
- gastrointestinální trakt parazitologie MeSH
- hmyz - vektory parazitologie MeSH
- hostitelská specificita MeSH
- kanáři parazitologie MeSH
- mikroskopie elektronová rastrovací MeSH
- nemoci ptáků parazitologie přenos MeSH
- polymerázová řetězová reakce MeSH
- ptáci parazitologie MeSH
- Trypanosoma klasifikace genetika fyziologie ultrastruktura MeSH
- trypanozomiáza diagnóza parazitologie přenos veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Biting midges of the genus Culicoides transmit pathogens of veterinary importance such as bluetongue virus (Reoviridae: Orbivirus). The saliva of Culicoides is known to contain bioactive molecules including peptides and proteins with vasodilatory and immunomodulative properties. In this study, we detected activity of enzyme hyaluronidase in six Culicoides species that commonly occur in Europe and that are putative vectors of arboviruses. Hyaluronidase was present in all species studied, although its molecular size, sensitivity to SDS, and substrate specificity differed between species. Further studies on the potential effect of hyaluronidase activity on the vector competence of Culicoides species for arboviruses would be beneficial.
In the light of the emergence of bluetongue and Schmallenberg viruses in northern and central Europe, an extensive entomological survey within the framework of a bluetongue control program was undertaken from 2008 to 2013 in the Czech Republic to investigate Culicoides biting midges (Diptera: Ceratopogonidae) collected in close proximity of domestic livestock and semiwild ruminants. Insects were sampled using CDC black-light suction traps placed overnight near ruminants in farms or in forest game preserves to provide data on Culicoides fauna collected near these two groups of hosts inhabiting different environments. From almost a half million biting midge specimens collected at 41 sampling sites, 34 species were identified including three species newly recorded for the Czech Republic: Culicoides (Oecacta) clastrieri Callot, Kremer & Deduit, Culicoides (Oecacta) odiatus Austen, and Culicoides (Pontoculicoides) saevus Kieffer. The Culicoides obsoletus species group, incriminated as a bluetongue virus vector, was predominant in both domestic livestock (91%) and semiwild game (52%). A relatively high proportion (around 30%) of C. obsoletus Meigen females with pigmented abdomen (= more likely parous) was observed from spring till autumn. In contrast, adult biting midges were found to be largely absent during at least three winter months, approximately December till March, which could be considered as the biting midge vector-free period.
- MeSH
- Ceratopogonidae * MeSH
- dobytek MeSH
- hmyz - vektory * MeSH
- populační dynamika MeSH
- přežvýkavci * MeSH
- roční období MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Sedentary bird species are suitable model hosts for identifying potential vectors of avian blood parasites. We studied haemosporidian infections in the Tengmalm's Owl (Aegolius funereus) in the Ore Mountains of the Czech Republic using molecular detection methods. Sex of owl nestlings was scored using molecular sexing based on fragment analysis of PCR-amplified CHD1 introns. Observed infection prevalences in nestlings and adult owls were 51 and 86 %, respectively. Five parasite lineages were detected. Most of the infections comprised the Leucocytozoon AEFUN02 and STOCC06 lineages that probably refer to distinct Leucocytozoon species. Other lineages were detected only sporadically. Mixed infections were found in 49 % of samples. The main factor affecting the probability of infection was host age. No effect of individual sex on infection probability was evidenced. The youngest infected nestling was 12 days old. High parasite prevalence in the Tengmalm's Owl nestlings suggests that insect vectors must enter nest boxes to transmit parasites before fledging. Hence, we placed sticky insect traps into modified nest boxes, collected potential insect vectors, and examined them for the presence of haemosporidian parasites using molecular detection. We trapped 201 insects which were determined as biting midges from the Culicoides genus and two black fly species, Simulium (Nevermannia) vernum and Simulium (Eusimulium) angustipes. Six haemosporidian lineages were detected in the potential insect vectors, among which the Leucocytozoon lineage BT2 was common to the Tengmalm's Owl and the trapped insects. However, we have not detected the most frequently encountered Tengmalm's Owl Leucocytozoon lineages AEFUN02 and STOCC06 in insects.
- MeSH
- Ceratopogonidae parazitologie MeSH
- Haemosporida genetika izolace a purifikace MeSH
- hmyz - vektory parazitologie MeSH
- nemoci ptáků epidemiologie parazitologie přenos MeSH
- polymerázová řetězová reakce MeSH
- prevalence MeSH
- protozoální infekce zvířat epidemiologie parazitologie přenos MeSH
- sexuální faktory MeSH
- Simuliidae parazitologie MeSH
- Stringiformes parazitologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Interleukin-3 is a growth and differentiation factor for various hematopoietic cells. IL-3 also enhances stimulus-dependent release of mediators and cytokine production by mature basophils. Function of IL-3 has not been studied in horses because of lack of horse-specific reagents. Our aim was to produce recombinant equine IL-3 and test its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes (PBL). Equine IL-3 was cloned, expressed in E. coli and purified. PBL of 19 healthy and 20 insect bite hypersensitivity (IBH)-affected horses were stimulated with Culicoides nubeculosus extract with or without IL-3. Sulfidoleukotriene (sLT) production was measured in supernatants by ELISA and mRNA expression of IL-4, IL-13 and thymic stromal lymphopoietin (TSLP) assessed in cell lysate by quantitative real-time PCR. Recombinant equine IL-3 (req-IL-3) had a dose dependent effect on sLT production by stimulated equine PBL and significantly increased IL-4, IL-13 and TSLP expression compared to non-primed cells. IL-3 priming significantly increased Culicoides-induced sLT production in IBH-affected but not in non-affected horses and was particularly effective in young IBH-affected horses (≤ 3 years). A functionally active recombinant equine IL-3 has been produced which will be useful for future immunological studies in horses. It will also allow improving the sensitivity of cellular in vitro tests for allergy diagnosis in horses.
- MeSH
- alergie imunologie veterinární MeSH
- Ceratopogonidae MeSH
- cytokiny genetika metabolismus MeSH
- interleukin-3 farmakologie MeSH
- klonování DNA * MeSH
- koně metabolismus MeSH
- kousnutí a bodnutí hmyzem imunologie veterinární MeSH
- leukocyty účinky léků metabolismus MeSH
- leukotrieny genetika metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- rekombinantní proteiny MeSH
- stárnutí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Despite their importance in animal and human health, the epidemiology of species of the Leishmania enriettii complex remains poorly understood, including the identity of their biological vectors. Biting midges of the genus Forcipomyia (Lasiohelea) have been implicated in the transmission of a member of the L. enriettii complex in Australia, but the far larger and more widespread genus Culicoides has not been investigated for the potential to include vectors to date. METHODOLOGY/PRINCIPAL FINDINGS: Females from colonies of the midges Culicoides nubeculosus Meigen and C. sonorensis Wirth & Jones and the sand fly Lutzomyia longipalpis Lutz & Nevia (Diptera: Psychodidae) were experimentally infected with two different species of Leishmania, originating from Australia (Leishmania sp. AM-2004) and Brazil (Leishmania enriettii). In addition, the infectivity of L. enriettii infections generated in guinea pigs and golden hamsters for Lu. longipalpis and C. sonorensis was tested by xenodiagnosis. Development of L. enriettii in Lu. longipalpis was relatively poor compared to other Leishmania species in this permissive vector. Culicoides nubeculosus was not susceptible to infection by parasites from the L. enriettii complex. In contrast, C. sonorensis developed late stage infections with colonization of the thoracic midgut and the stomodeal valve. In hamsters, experimental infection with L. enriettii led only to mild symptoms, while in guinea pigs L. enriettii grew aggressively, producing large, ulcerated, tumour-like lesions. A high proportion of C. sonorensis (up to 80%) feeding on the ears and nose of these guinea pigs became infected. CONCLUSIONS/SIGNIFICANCE: We demonstrate that L. enriettii can develop late stage infections in the biting midge Culicoides sonorensis. This midge was found to be susceptible to L. enriettii to a similar degree as Lutzomyia longipalpis, the vector of Leishmania infantum in South America. Our results support the hypothesis that some biting midges could be natural vectors of the L. enriettii complex because of their vector competence, although not Culicoides sonorensis itself, which is not sympatric, and midges should be assessed in the field while searching for vectors of related Leishmania species including L. martiniquensis and "L. siamensis".
- MeSH
- Ceratopogonidae parazitologie MeSH
- gastrointestinální trakt parazitologie MeSH
- hmyz - vektory * MeSH
- křeček rodu Mesocricetus MeSH
- Leishmania enriettii izolace a purifikace MeSH
- leishmanióza parazitologie patologie přenos MeSH
- morčata MeSH
- Psychodidae parazitologie MeSH
- zvířata MeSH
- Check Tag
- morčata MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH