The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
The intake of microbial-contaminated food poses severe health issues due to the outbreaks of stern food-borne diseases. Therefore, there is a need for precise detection and identification of pathogenic microbes and toxins in food to prevent these concerns. Thus, understanding the concept of biosensing has enabled researchers to develop nanobiosensors with different nanomaterials and composites to improve the sensitivity as well as the specificity of pathogen detection. The application of nanomaterials has enabled researchers to use advanced technologies in biosensors for the transfer of signals to enhance their efficiency and sensitivity. Nanomaterials like carbon nanotubes, magnetic and gold, dendrimers, graphene nanomaterials and quantum dots are predominantly used for developing biosensors with improved specificity and sensitivity of detection due to their exclusive chemical, magnetic, mechanical, optical and physical properties. All nanoparticles and new composites used in biosensors need to be classified and categorized for their enhanced performance, quick detection, and unobtrusive and effective use in foodborne analysis. Hence, this review intends to summarize the different sensing methods used in foodborne pathogen detection, their design, working principle and advances in sensing systems.
- MeSH
- Bacteria izolace a purifikace patogenita MeSH
- biosenzitivní techniky * MeSH
- grafit chemie MeSH
- lidé MeSH
- nanočástice chemie MeSH
- nanostruktury chemie MeSH
- nanotechnologie trendy MeSH
- nanotrubičky uhlíkové chemie MeSH
- nemoci přenášené potravou diagnóza mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Self-propelled microrobots are seen as the next step of micro- and nanotechnology. The biomedical and environmental applications of these robots in the real world need their motion in the confined environments, such as in veins or spaces between the grains of soil. Here, self-propelled trilayer microrobots have been prepared using electrodeposition techniques, coupling unique properties of green bismuth (Bi) with a layered crystal structure, magnetic nickel (Ni), and a catalytic platinum (Pt) layer. These Bi-based microrobots are investigated as active self-propelled platforms that can load, transfer, and release both doxorubicin (DOX), as a widely used anticancer drug, and arsenic (As) and chromium (Cr), as hazardous heavy metals. The significantly high loading capability for such variable cargoes is due to the high surface area provided by the rhombohedral layered crystal structure of bismuth, as well as the defects introduced through the oxide layer formed on the surface of bismuth. The drug release is based on an ultrafast electroreductive mechanism in which the electron injection into microrobots and consequently into the loaded objects causes an electrostatic repulsion between them and thus an ultrafast release of the loaded cargos. Remarkably, we have presented magnetic control of the Bi-based microrobots inside a microfluidic system equipped with an electrochemical setup as a proof-of-concept to demonstrate (i) heavy metals/DOX loading, (ii) a targeted transport system, (iii) the on-demand release mechanism, and (iv) the recovery of the robots for further usage.
- MeSH
- antitumorózní látky chemie terapeutické užití MeSH
- bismut * chemie toxicita MeSH
- chrom chemie toxicita MeSH
- doxorubicin * chemie MeSH
- lidé MeSH
- nádory * farmakoterapie patologie MeSH
- nanotechnologie trendy MeSH
- platina chemie toxicita MeSH
- těžké kovy chemie toxicita MeSH
- uvolňování léčiv MeSH
- uzavřené prostory MeSH
- Check Tag
- lidé MeSH
Histamine is a heterocyclic amine formed by decarboxylation of the amino acid l-histidine. It is involved in the local regulation of physiological processes but also can occur exogenously in the food supply. Histamine is toxic at high intakes; therefore, determination of the histamine level in food is an important aspect of food safety. This article will review the current understanding of physiological functions of endogenous and ingested histamine with a particular focus placed on existing and emerging technologies for histamine quantification in food. Methods reported in this article are sequentially arranged and provide a brief overview of analytical methods reported, including those based on nanotechnologies.
Východiska: I přes rychlý vývoj nových, efektivnějších cytostatik a cílené terapie není úspěšnost léčby karcinomů plic stále dostačující. Systémově aplikované léčivo je k nádorovým buňkám často dopraveno v neefektivních koncentracích, a to především kvůli specifickému extracelulárnímu prostředí plic. Nanotransportéry mohou ochránit léčivo před těmito nežádoucími vlivy, zvýšit jeho účinnost a snížit jeho nežádoucí účinky. Nanotechnologie mají navíc potenciál zvýšit diagnostickou úspěšnost nádorů plic, a tím přispět ke zlepšení přežití onkologických pacientů. Cíl: Cílem této práce je ilustrovat možnosti, které nanotechnologie nabízejí na poli léčby a diagnostiky nádorů plic, a diskutovat překážky, které brání jejich zavedení do klinické praxe.
Backgrounds: Despite the fast development of new effective cytostatics and targeted therapy, the treatment efficiency of lung cancer is still insufficient. The systemic administration of drugs results in a decrease in drug concentrations in tumor site, particularly due to specific extracellular environment in lungs. Nanotransporters could serve as a platform, protecting a drug against these undesired effects, which may enhance its therapeutic index and reduce side effects of a drug. Moreover, nanotechnologies possess the potential to improve the diagnostics of lung cancer, and thus increase a survival rate of oncologic patients. Aim: The presented study is aimed to demonstrate the possibilities provided by nanotechnologies in the field of treatment and diagnostic of lung cancers and discuss the obstacles, which complicate a translation into clinical practice. Key words: targeted delivery – liposomes – nanoparticles – non‑small cell lung cancer – small cell lung cancer The study was supported by League Against Cancer Prague (project 18257/2014-981) and by the Czech Ministry of Health – RVO, FN v Motole 00064203. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers. Submitted: 21. 3. 2015 Accepted: 11. 5. 2015
- MeSH
- biokompatibilní materiály MeSH
- extracelulární prostor účinky léků MeSH
- lidé MeSH
- nádory plic * farmakoterapie MeSH
- nanočástice * klasifikace využití MeSH
- nanotechnologie trendy MeSH
- nemalobuněčný karcinom plic * farmakoterapie MeSH
- nosiče léků MeSH
- permeabilita účinky léků MeSH
- plíce účinky léků MeSH
- transportní proteiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
- MeSH
- dezinfekce * MeSH
- environmentální zdraví * MeSH
- lidé MeSH
- lůžka MeSH
- nanotechnologie * metody trendy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- novinové články MeSH
High grade gliomas are some of the deadliest human tumours. Conventional treatments such as surgery, radiotherapy and chemotherapy have only a limited effect. Nowadays, resection is the common treatment of choice and although new approaches, such as perioperative magnetic resonance imaging or fluorescent microscopy have been developed, the survival rate of diagnosed patients is still very low. The inefficacy of conventional methods has led to the development of new strategies and the significant progress of nanotechnology in recent years. These platforms can be used either as novel imaging tools or to improve anticancer drug delivery into tumours while minimizing its distribution and toxicity in healthy tissues. Amongst the new nanotechnology platforms used for delivery into the brain tissue are: polymeric nanoparticles, liposomes, dendrimers, nanoshells, carbon nanotubes, superparamagnetic nanoparticles and nucleic acid based nanoparticles (DNA, RNA interference [RNAi] and antisense oligonucleotides [ASO]). These nanoparticles have been applied in the delivery of small molecular weight drugs as well as macromolecules - proteins, peptides and genes. The unique properties of these nanoparticles, such as surface charge, particle size, composition and ability to modify their surface with tissue recognition ligands and antibodies, improve their biodistribution and pharmacokinetics. All of the above mentioned characteristics make of nanoplatforms a very suitable tool for its use in targeted, personalized medicine, where they could possibly carry large doses of therapeutic agents specifically into malignant cells while avoiding healthy cells. This review poses new possibilities in the large field of nanotechnology with special interest in the treatment of high grade brain tumours.
- MeSH
- antitumorózní látky terapeutické užití MeSH
- diagnostické zobrazování MeSH
- genetická terapie MeSH
- genetické vektory MeSH
- lidé MeSH
- nádory mozku terapie MeSH
- nanočástice terapeutické užití MeSH
- nanotechnologie trendy MeSH
- nanotrubičky MeSH
- nosiče léků MeSH
- systémy cílené aplikace léků MeSH
- transplantace kmenových buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- MeSH
- automatizace * MeSH
- beta-laktamasy * MeSH
- chirurgie * normy organizace a řízení MeSH
- dekontaminace * metody MeSH
- dezinfekce * MeSH
- hemoragická horečka Ebola * prevence a kontrola MeSH
- hojení ran * MeSH
- hygiena rukou * normy trendy MeSH
- infekce spojené se zdravotní péčí * diagnóza prevence a kontrola terapie MeSH
- kontrola infekčních nemocí * metody normy organizace a řízení trendy MeSH
- lidé MeSH
- management lékařské praxe * normy organizace a řízení využití MeSH
- methicilin rezistentní Staphylococcus aureus * patogenita MeSH
- nanotechnologie * metody trendy MeSH
- odměny a ceny * MeSH
- přenos infekce z pacienta na zdravotnického pracovníka * prevence a kontrola MeSH
- primární prevence normy organizace a řízení pracovní síly trendy MeSH
- priony * MeSH
- rezistence na penicilin * MeSH
- riziko * MeSH
- směrnice jako téma * normy MeSH
- sterilizace * MeSH
- vzdělávání pacientů jako téma * metody normy organizace a řízení pracovní síly trendy MeSH
- zdravotní sestry v klinické praxi * organizace a řízení trendy MeSH
- zdravotnická zařízení * normy pracovní síly využití MeSH
- zdravotnické prostředky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- rozhovory MeSH
This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist.
- MeSH
- biologické bojové látky dějiny MeSH
- chemická válka dějiny trendy MeSH
- chemické bojové látky chemie dějiny toxicita MeSH
- chemické látky k potlačení nepokojů chemie dějiny toxicita MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- dějiny středověku MeSH
- lidé MeSH
- mezinárodní spolupráce MeSH
- nanotechnologie trendy MeSH
- testy toxicity MeSH
- veřejná politika MeSH
- vojenská věda dějiny MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- dějiny středověku MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- MeSH
- aplikace orální * MeSH
- biomedicínský výzkum * trendy MeSH
- chitosan terapeutické užití MeSH
- inzulin * aplikace a dávkování škodlivé účinky terapeutické užití MeSH
- lidé MeSH
- metaanalýza jako téma MeSH
- mitogeny škodlivé účinky MeSH
- mitóza fyziologie účinky léků MeSH
- nanotechnologie metody trendy MeSH
- střevní sliznice metabolismus účinky léků MeSH
- způsoby aplikace léků MeSH
- Check Tag
- lidé MeSH