Streptophytes constitute a major organismal clade comprised of land plants (embryophytes) and several related green algal lineages1. Their seemingly well-studied phylogenetic diversity was recently enriched by the discovery of Streptofilum capillaum, a simple filamentous alga forming a novel deep streptophyte lineage in a two-gene phylogeny2. A subsequent phylogenetic analysis of plastid genome-encoded proteins resolved Streptofilum as a sister group of nearly all known streptophytes, including Klebsormidiophyceae and Phragmoplastophyta (Charophyceae, Coleochaetophyceae, Zygnematophyceae, and embryophytes)3. However, another recent report, published in Current Biology by Bierenbroodspot et al.4, presented a phylogenetic analysis of 845 nuclear loci, resolving S. capillatum as a member of Klebsormidiophyceae, nested among species of the genus Interfilum. Here, we demonstrate that the latter result is an artefact stemming from an unrecognized contamination of the transcriptome assembly from S. capillatum by sequences from Interfilum paradoxum. When confirmed S. capillatum sequences are employed in the analysis, the position of the alga in the nuclear gene-based tree fully agrees with the plastid gene-based phylogeny. Our results underscore S. capillatum as a lineage pivotal for the understanding of the evolutionary genesis of streptophyte, and ultimately embryophyte, traits.
- MeSH
- Chlorophyta genetika klasifikace MeSH
- fylogeneze * MeSH
- Streptophyta * genetika klasifikace MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- dopisy MeSH
Diplomonads are anaerobic, flagellated protists, being part of the Metamonada group of Eukaryotes. Diplomonads either live as endobionts (parasites and commensals) of animals or free-living in low-oxygen environments. Genomic information is available for parasitic diplomonads like Giardia intestinalis and Spironucleus salmonicida, while little is known about the genomic arrangements of free-living diplomonads. We have generated the first reference genome of a free-living diplomonad, Hexamita inflata. The final version of the genome assembly is fragmented (1241 contigs) but substantially larger (142 Mbp) than the parasitic diplomonad genomes (9.8-14.7 Mbp). It encodes 79,341 proteins; 29,874 have functional annotations and 49,467 are hypothetical proteins. Interspersed repeats comprise 34% of the genome (9617 Retroelements, 2676 DNA transposons). The large expansion of protein-encoding capacity and the interspersed repeats are the major reasons for the large genome size. This genome from a free-living diplomonad will be the basis for further studies of the Diplomonadida lineage and the evolution of parasitism-free living style transitions.
- MeSH
- Diplomonadida * genetika MeSH
- genom protozoální * MeSH
- retroelementy MeSH
- rozptýlené repetitivní sekvence MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Názvy látek
- retroelementy MeSH
BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.
- Klíčová slova
- Trichomonas vaginalis, Hydrogenosomes, Mitochondria, Parasite, Presequence translocase-associated motor, Protein import machinery, TIM22 complex, TIM23 complex,
- MeSH
- mitochondriální importní komplex MeSH
- mitochondrie metabolismus MeSH
- organely metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- transport proteinů * MeSH
- Trichomonas vaginalis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální importní komplex MeSH
- protozoální proteiny MeSH
The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted β-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.
- Klíčová slova
- Trichomonas vaginalis, cysteine peptidase, glycosylation, mannose 6-phosphate receptor, phagolysosome, proteome,
- MeSH
- cystein metabolismus MeSH
- cysteinové proteasy * metabolismus MeSH
- fagozomy metabolismus MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- proteasy metabolismus MeSH
- proteomika MeSH
- Trichomonas vaginalis * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystein MeSH
- cysteinové proteasy * MeSH
- proteasy MeSH
Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90-100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.
- MeSH
- anaerobióza MeSH
- Entamoeba histolytica metabolismus MeSH
- fylogeneze MeSH
- inositol metabolismus MeSH
- mutace * MeSH
- peroxiny metabolismus MeSH
- peroxizomální cílové signály * MeSH
- peroxizomy metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inositol MeSH
- peroxiny MeSH
- peroxizomální cílové signály * MeSH
- protozoální proteiny MeSH
The type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion.
- MeSH
- biologické modely MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- gramnegativní bakterie klasifikace genetika metabolismus MeSH
- konzervovaná sekvence MeSH
- mitochondriální proteiny klasifikace genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- molekulární evoluce * MeSH
- molekulární modely MeSH
- Naegleria klasifikace genetika metabolismus MeSH
- peroxizomy metabolismus MeSH
- protozoální proteiny klasifikace genetika metabolismus MeSH
- sekreční systém typu II klasifikace genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- protozoální proteiny MeSH
- sekreční systém typu II MeSH
The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).
- Klíčová slova
- Mastigamoeba, Archamoebae, chitinous cysts, evolution of parasitism, lateral gene transfer, pathway complexity,
- MeSH
- anaerobióza genetika MeSH
- Archamoebae genetika metabolismus MeSH
- biologická adaptace genetika MeSH
- biologická evoluce * MeSH
- délka genomu MeSH
- Entamoeba histolytica genetika MeSH
- genom protozoální * MeSH
- paraziti genetika MeSH
- přenos genů horizontální MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
BACKGROUND: Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. RESULTS: We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. CONCLUSION: Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans).
- Klíčová slova
- Evolution, HCF101, Ind1, Iron-sulfur cluster, Mitochondrion, Plastid,
- MeSH
- Cryptosporidium * MeSH
- fylogeneze MeSH
- kryptosporidióza * MeSH
- proteiny obsahující železo a síru * genetika MeSH
- síra MeSH
- železo MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny obsahující železo a síru * MeSH
- síra MeSH
- železo MeSH
For tens of millions of years (Ma), the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 and 635 Ma before present-Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants but on a comprehensive set of eukaryotes indicate that within the Streptophyta, multicellular charophytes (Phragmoplastophyta) evolved in the Mesoproterozoic to the early Neoproterozoic. At the same time, Cryogenian is the time of the likely origin of the common ancestor of Zygnematophyceae and Embryophyta and later, also of the Zygnematophyceae-Embryophyta split. This common ancestor is proposed to be called Anydrophyta; here, we use anydrophytes. Based on the combination of published phylogenomic studies and estimated diversification time comparisons, we deem it highly likely that anydrophytes evolved in response to Cryogenian cooling. Also, later in the Cryogenian, secondary simplification of multicellular anydrophytes and loss of flagella resulted in Zygnematophyceae diversification as an adaptation to the extended cold glacial environment. We propose that the Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta but also by Streptophyta, including the anydrophytes, and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible that multicellular early Embryophyta survived in less abundant (possibly relatively warmer) refugia, relying more on mineral substrates, allowing the retention of flagella-based sexuality. The loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae and zygomycetous fungi during the Cryogenian in a remarkably convergent way. Thus, we support the concept that the important basal cellular adaptations to terrestrial environments were exapted in streptophyte algae for terrestrialization and propose that this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle when considering the rise of land plants increases the parsimony of connecting different ecological, phylogenetic, and physiological puzzles of the journey from aquatic algae to terrestrial floras.
- Klíčová slova
- Anydrophyta, Charophyta, Cryogenian glaciation, Embryophyta, Snowball Earth, Streptophyta, Zygnematophyceae, plant evolution,
- Publikační typ
- časopisecké články MeSH
The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either β-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.
- Klíčová slova
- Mastigamoeba balamuthi, anaerobiosis, mitochodria, peroxisome,
- MeSH
- anaerobióza MeSH
- Archamoebae genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- oxidace-redukce MeSH
- peroxiny genetika metabolismus MeSH
- peroxizomy genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peroxiny MeSH
- protozoální proteiny MeSH
- reaktivní formy kyslíku MeSH