The protozoan parasite Trichomonas vaginalis (Tv) causes trichomoniasis, the most common non-viral sexually transmitted infection in the world. Although Tv has been linked to significant health complications, only two closely related 5-nitroimidazole drugs are approved for its treatment. The emergence of resistance to these drugs and lack of alternative treatment options poses an increasing threat to public health, making development of novel anti-Trichomonas compounds an urgent need. The proteasome, a critical enzyme complex found in all eukaryotes has three catalytic subunits, β1, β2, and β5 and has been validated as a drug target to treat trichomoniasis. With the goal of developing tools to study the Tv proteasome, we isolated the enzyme complex and identified inhibitors that preferentially inactivate either one or two of the three catalytic subunits. Using a mass spectrometry-based peptide digestion assay, these inhibitors were used to define the substrate preferences of the β1, β2 and β5 subunits. Subsequently, three model fluorogenic substrates were designed, each specific for one of the catalytic subunits. This novel substrate profiling methodology will allow for individual subunit characterization of other proteasomes of interest. Using the new substrates, we screened a library of 284 peptide epoxyketone inhibitors against Tv and determined the subunits targeted by the most active compounds. The data show that inhibition of the Tv β5 subunit alone is toxic to the parasite. Taken together, the optimized proteasome subunit substrates will be instrumental for understanding the molecular determinants of proteasome specificity and for accelerating drug development against trichomoniasis.
- Klíčová slova
- drug discovery, drug screening, parasite, protease inhibitor, proteasome, substrate specificity, trichomonas,
- MeSH
- inhibitory proteasomu farmakologie chemie MeSH
- katalytická doména * MeSH
- proteasomový endopeptidasový komplex * metabolismus chemie MeSH
- protozoální proteiny chemie metabolismus antagonisté a inhibitory genetika MeSH
- substrátová specifita MeSH
- Trichomonas vaginalis * enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory proteasomu MeSH
- proteasomový endopeptidasový komplex * MeSH
- protozoální proteiny MeSH
Trichomoniasis, a globally distributed sexually transmitted infection, is caused by the urogenital parasite Trichomonas vaginalis Donné, 1836 affecting both women and men. The treatment of choice is metronidazole (MTZ). In the present study, 15 samples of vaginal discharge and urine were analysed by sequencing nitroreductase genes (ntr4 and ntr6). An in silico model was structured to illustrate the location of point mutations (PM) in the protein. The ntr4 gene presented four PMs: G76C (10/10), C213G (9/10), C318A (5/10) and G424A (1/10), while the ntr6 gene had eight PMs; G593A (13/13) the most frequent, G72T and G627C, both in 8/13. The PM C213G and A438T generated a stop codon causing a truncated nitroreductase 4 and 6 protein. Docking analysis demonstrated that some models had a decrease in binding affinity to MTZ (p < 0.0001). A high frequency of mutations was observed in the samples analysed that could be associated with resistance to MTZ in Chile.
- Klíčová slova
- clinical samples., dysfunctional enzyme, genital infection, protein polymorphism, refractory treatment, trichomoniasis,
- MeSH
- antiprotozoální látky farmakologie MeSH
- bodová mutace * MeSH
- léková rezistence * MeSH
- lidé MeSH
- metronidazol * farmakologie MeSH
- nitroreduktasy * genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- trichomonádová vaginitida parazitologie MeSH
- Trichomonas vaginalis * genetika účinky léků enzymologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Chile MeSH
- Názvy látek
- antiprotozoální látky MeSH
- metronidazol * MeSH
- nitroreduktasy * MeSH
- protozoální proteiny MeSH
The proteasome is a proteolytic enzyme complex essential for protein homeostasis in mammalian cells and protozoan parasites like Trichomonas vaginalis (Tv), the cause of the most common, non-viral sexually transmitted disease. Tv and other protozoan 20S proteasomes have been validated as druggable targets for antimicrobials. However, low yields and purity of the native proteasome have hindered studies of the Tv 20S proteasome (Tv20S). We address this challenge by creating a recombinant protozoan proteasome by expressing all seven α and seven β subunits of Tv20S alongside the Ump-1 chaperone in insect cells. The recombinant Tv20S displays biochemical equivalence to its native counterpart, confirmed by various assays. Notably, the marizomib (MZB) inhibits all catalytic subunits of Tv20S, while the peptide inhibitor carmaphycin-17 (CP-17) specifically targets β2 and β5. Cryo-electron microscopy (cryo-EM) unveils the structures of Tv20S bound to MZB and CP-17 at 2.8 Å. These findings explain MZB's low specificity for Tv20S compared to the human proteasome and demonstrate CP-17's higher specificity. Overall, these data provide a structure-based strategy for the development of specific Tv20S inhibitors to treat trichomoniasis.
- MeSH
- elektronová kryomikroskopie * MeSH
- inhibitory proteasomu * farmakologie chemie MeSH
- lidé MeSH
- molekulární modely MeSH
- proteasomový endopeptidasový komplex * metabolismus MeSH
- protozoální proteiny metabolismus antagonisté a inhibitory genetika chemie MeSH
- rekombinantní proteiny * metabolismus genetika MeSH
- Trichomonas vaginalis * účinky léků genetika enzymologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- inhibitory proteasomu * MeSH
- proteasomový endopeptidasový komplex * MeSH
- protozoální proteiny MeSH
- rekombinantní proteiny * MeSH
Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.
- Klíčová slova
- Endomembrane, Evolution, Parabasalids, Phylogenomics, Retriever, Retromer,
- MeSH
- endozomy * metabolismus MeSH
- fylogeneze MeSH
- Golgiho aparát metabolismus MeSH
- lidé MeSH
- molekulární evoluce MeSH
- protozoální proteiny metabolismus genetika MeSH
- transport proteinů MeSH
- Trichomonas vaginalis metabolismus genetika MeSH
- třídící nexiny metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální proteiny MeSH
- třídící nexiny MeSH
BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.
- Klíčová slova
- Trichomonas vaginalis, Hydrogenosomes, Mitochondria, Parasite, Presequence translocase-associated motor, Protein import machinery, TIM22 complex, TIM23 complex,
- MeSH
- mitochondriální importní komplex MeSH
- mitochondrie metabolismus MeSH
- organely metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- transport proteinů * MeSH
- Trichomonas vaginalis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální importní komplex MeSH
- protozoální proteiny MeSH
The eukaryotic phylum Parabasalia is composed primarily of anaerobic, endobiotic organisms such as the veterinary parasite Tritrichomonas foetus and the human parasite Trichomonas vaginalis, the latter causing the most prevalent, non-viral, sexually transmitted disease world-wide. Although a parasitic lifestyle is generally associated with a reduction in cell biology, T. vaginalis provides a striking counter-example. The 2007 T. vaginalis genome paper reported a massive and selective expansion of encoded proteins involved in vesicle trafficking, particularly those implicated in the late secretory and endocytic systems. Chief amongst these were the hetero-tetrameric adaptor proteins or 'adaptins', with T. vaginalis encoding ∼3.5 times more such proteins than do humans. The provenance of such a complement, and how it relates to the transition from a free-living or endobiotic state to parasitism, remains unclear. In this study, we performed a comprehensive bioinformatic and molecular evolutionary investigation of the heterotetrameric cargo adaptor-derived coats, comparing the molecular complement and evolution of these proteins between T. vaginalis, T. foetus and the available diversity of endobiotic parabasalids. Notably, with the recent discovery of Anaeramoeba spp. as the free-living sister lineage to all parabasalids, we were able to delve back to time points earlier in the lineage's history than ever before. We found that, although T. vaginalis still encodes the most HTAC subunits amongst parabasalids, the duplications giving rise to the complement took place more deeply and at various stages across the lineage. While some duplications appear to have convergently shaped the parasitic lineages, the largest jump is in the transition from free-living to endobiotic lifestyle with both gains and losses shaping the encoded complement. This work details the evolution of a cellular system across an important lineage of parasites and provides insight into the evolutionary dynamics of an example of expansion of protein machinery, counter to the more common trends observed in many parasitic systems.
- Klíčová slova
- COPI, Clathrin, Evolutionary cell biology, Membrane trafficking, Metamonada, Trichomonas vaginalis,
- MeSH
- lidé MeSH
- Parabasalidea * MeSH
- paraziti * MeSH
- Trichomonas vaginalis * genetika MeSH
- Tritrichomonas foetus * genetika MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
- Klíčová slova
- Trichomonas, history, hydrogenosome, iron sulfur cluster assembly, metabolism, protein import,
- MeSH
- mitochondrie metabolismus MeSH
- organely metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- transport proteinů MeSH
- Trichomonas vaginalis * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- protozoální proteiny MeSH
BACKGROUND: Trichomonas vaginalis is the causative agent of a sexually transmitted disease in humans. The virulence of the parasite depends on multiple factors, including the presence of endosymbiotic dsRNA viruses. The presence of Trichomonasviruses (TVV) was associated with more severe genital symptoms, increased proinflammatory host reactions, and modulated parasite sensitivity to metronidazole. However, no efficient antiviral drugs are available against TVV to derive isogenic TVV-positive and TVV-negative cell lines that are essential for investigations of the TVV impact on T. vaginalis biology. METHODS: 7-Deaza-2'-C-methyladenosine (7d2CMA) and 2'-C-methylcytidine (2CMC) were used for TVV inhibitory assay. TVV replication was monitored using quantitative reverse transcription PCR (RT qPCR) and western blotting. Modeling of TVV1 RNA-dependent RNA polymerase (RdRp) was performed to visualize the inhibitor-RdRp interaction. Susceptibility to metronidazole was performed under aerobic and anaerobic conditions. RESULTS: We demonstrated that 2CMC but not 7d2CMA is a potent inhibitor of TVV replication. Molecular modeling suggested that the RdRp active site can accommodate 2CMC in the active triphosphate nucleotide form. The effect of 2CMC was shown on strains infected with a single and multiple TVV species. The optimal 2CMC concentration (10 μM) demonstrated strong selectivity for TVVs over trichomonad growth. The presence of TVV has no effect on T. vaginalis metronidazole susceptibility in derived isogenic cell lines. CONCLUSIONS: 2CMC acts against TVVs and represents a new inhibitor against Totiviridae viruses. Our isogenic clones are now available for further studies of various aspects of T. vaginalis biology related to TVV infection.
- Klíčová slova
- Capsid protein, Nucleoside analog, RNA dependent RNA polymerase, TVV, Trichomonasvirus,
- MeSH
- antivirové látky farmakologie MeSH
- cytidin farmakologie MeSH
- lidé MeSH
- metronidazol farmakologie MeSH
- nukleosidy farmakologie MeSH
- paraziti * MeSH
- RNA-dependentní RNA-polymerasa MeSH
- RNA-viry * genetika MeSH
- Totiviridae * genetika MeSH
- Trichomonas vaginalis * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- cytidin MeSH
- metronidazol MeSH
- nukleosidy MeSH
- RNA-dependentní RNA-polymerasa MeSH
Accumulated evidence suggests that the endosymbiotic Trichomonasvirus (TVV) may play a role in the pathogenesis and drug susceptibility of Trichomonas vaginalis. Several reports have shown that extracellular vesicles (EVs) released from TVV-positive (TVV+) trichomonads can modulate the immune response in human vaginal epithelial cells and animal models. These results prompted us to examine whether EVs released from TVV+ isolates contained TVV. We isolated small extracellular vesicles (sEVs) from six T. vaginalis isolates that were either TVV free (ATCC 50143), harbored a single (ATCC 30236, ATCC 30238, T1), two (ATCC PRA-98), or three TVV subspecies (ATCC 50148). The presence of TVV subspecies in the six isolates was observed using reverse transcription-polymerase chain reaction (RT-PCR). Transmission electron microscopy (TEM) confirmed the presence of cup-shaped sEVs with a size range from 30-150 nm. Trichomonas vaginalis tetraspanin (TvTSP1; TVAG_019180), the classical exosome marker, was identified in all the sEV preparations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that all the sEVs isolated from TVV+ isolates contain viral capsid proteins derived from the same TVV subspecies in that isolate as demonstrated by RT-PCR. To provide more comprehensive information on the TVV subspecies population in other T. vaginalis isolates, we investigated the distribution of TVV subspecies in twenty-four isolates by mining the New-Generation Sequencing (NGS) RNAseq datasets. Our results should be beneficial for future studies investigating the role of TVV on the pathogenicity of T. vaginalis and the possible transmission of virus subspecies among different isolates via sEVs.
- Klíčová slova
- New-Generation Sequencing, Trichomonas vaginalis, Trichomonasvirus, extracellular vesicles, proteomics,
- MeSH
- chromatografie kapalinová MeSH
- dvouvláknová RNA MeSH
- extracelulární vezikuly * genetika MeSH
- RNA-viry * genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- Trichomonas vaginalis * genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dvouvláknová RNA MeSH
The case reports describes detection of Trichomonas vaginalis in a 34-year-old patient with preterm prelabor rupture of membranes and a subsequent C-section in week 25 of her pregnancy, with the presence of T. vaginalis not being the only risk factor for preterm labor. Although a rare finding in pregnant women, the presence of this microorganism must be considered in such situations.
- MeSH
- dospělí MeSH
- infekční komplikace v těhotenství * MeSH
- lidé MeSH
- novorozenec MeSH
- předčasná porodní činnost * etiologie MeSH
- rizikové faktory MeSH
- těhotenství MeSH
- trichomonádová vaginitida * komplikace MeSH
- Trichomonas vaginalis * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH