Most cited article - PubMed ID 33383642
Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane
The investigation of spatial heterogeneity within the thylakoid membrane (TM) proteins has gained increasing attention in photosynthetic research. The recent advances in live-cell imaging have allowed the identification of heterogeneous organisation of photosystems in small cyanobacterial cells. These sub-micrometre TM regions, termed microdomains in cyanobacteria, exhibit functional similarities with granal (Photosystem II dominant) and stromal (Photosystem I dominant) regions observed in TM of higher plants. This study delves into microdomain heterogeneity using super-resolution Airyscan-based microscopy enhancing resolution to approximately ~125 nm in x-y dimension. The new data reveal membrane areas rich in Photosystem I within the inner TM rings. Moreover, we identified analogous dynamics in the mobility of Photosystem II and phycobilisomes; countering earlier models that postulated differing mobility of these complexes. These novel findings thus hold significance for our understanding of photosynthesis regulation, particularly during state transitions.
- Keywords
- Airyscan, FRAP, cyanobacteria, microdomain, photosystem, protein mobility, super-resolution microscopy, thylakoid membrane heterogeneity,
- Publication type
- Journal Article MeSH
Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more "quenched" than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.
- Keywords
- Chromera velia, antenna proteins, fluorescence correlation spectroscopy, light-harvesting, microscopy, photosynthesis, protein diffusion, protein oligomerization,
- MeSH
- Algal Proteins chemistry metabolism MeSH
- Fluorescence * MeSH
- Spectrometry, Fluorescence MeSH
- Photosynthesis * MeSH
- Kinetics MeSH
- Protein Multimerization MeSH
- Protein Transport MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Algal Proteins MeSH
Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0-30 min), (2) intermediate phase (30-120 min), and (3) slow acclimation phase (120-360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ-carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.
- Keywords
- Synechocystis, carotenoids, high light, microdomains, non-photochemical quenching, photoinhibition, photoprotection, photosystems, thylakoid membrane,
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Photosystem I Protein Complex genetics metabolism MeSH
- Photosystem II Protein Complex genetics metabolism MeSH
- Carotenoids metabolism MeSH
- Light * MeSH
- Synechocystis metabolism radiation effects MeSH
- Thylakoids metabolism radiation effects MeSH
- Cell Size radiation effects MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Photosystem I Protein Complex MeSH
- Photosystem II Protein Complex MeSH
- Carotenoids MeSH
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
- Keywords
- antenna proteins, detergent critical micelle concentration, fluorescence correlation spectroscopy, non-photochemical quenching, photoprotection, photosynthesis, protein oligomerization,
- MeSH
- Chlorophyll chemistry genetics radiation effects MeSH
- Fluorescence MeSH
- Spectrometry, Fluorescence MeSH
- Photosynthesis genetics MeSH
- Photosystem II Protein Complex genetics radiation effects MeSH
- Phototrophic Processes genetics MeSH
- Antennapedia Homeodomain Protein chemistry genetics MeSH
- Hydrogen-Ion Concentration MeSH
- Protein Aggregates genetics MeSH
- Cluster Analysis MeSH
- Light adverse effects MeSH
- Light-Harvesting Protein Complexes chemistry genetics MeSH
- Thylakoids chemistry genetics radiation effects MeSH
- Zeaxanthins genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll MeSH
- Photosystem II Protein Complex MeSH
- Antennapedia Homeodomain Protein MeSH
- Protein Aggregates MeSH
- Light-Harvesting Protein Complexes MeSH
- Zeaxanthins MeSH