OBJECTIVES: Of several enzymes metabolizing xenobiotics, cytochrome P450 (CYP) and peroxidase enzymes seem to be most important. One of the major challenges in studies investigating metabolism of xenobiotics is to resolve which of these two groups of enzymes is predominant to metabolize individual xenobiotic compounds. Utilization of selective inhibitors of CYP and peroxidase enzymes might be a useful tool to identify the contribution of these enzymes to metabolism of xenobiotics in samples, where both types of enzymes are present. The aim of this study was to investigate specificities of several known CYP inhibitors to these enzymes; whether they inhibit only the CYP enzymes and do not inhibit peroxidases. METHODS: Since the oxidation of o-anisidine catalyzed by a model peroxidase used, horseradish peroxidase (HRP), is a two-substrate reaction, the inhibition potential of tested chemicals was studied with respect to both peroxidase substrates, o-anisidine and hydrogen peroxide. Initial velocities of o-anisidine oxidation by HRP under various conditions were determined spectrophotometrically. RESULTS: The CYP inhibitors metyrapone, troleandomycine, disulfiram, sulfaphenazole, quinidine and 1-aminobenzotriazole do not inhibit o-anisidine oxidation catalyzed by HRP. In contrast, ketoconazole, diethyldithiocarbamate, ellipticine, α-naphtoflavone, proadifen SKF525A, piperonylbutoxide, were found to inhibit not only the CYPs, but also the HRP-mediated oxidation of o-anisidine. Interestingly, α-naphtoflavone inhibits oxidation of o-anisidine by HRP with respect to H2O2, but not with respect to o-anisidine. Diethyldithiocarbamate is the most potent peroxidase inhibitor of o-anisidine oxidation with Ki with respect to o-anisidine of 10 μM and Ki with respect to H2O2 of 60 μM, being even the better peroxidase inhibitor than the classical "peroxidase inhibitor" - propyl gallate (Ki with respect to o-anisidine of 60 μM and Ki with respect to H2O2 of 750 μM). CONCLUSIONS: The results of the present study demonstrate that 1-aminobenzotriazole, a potent inhibitor of various CYP enzymes, seems to be the best candidate suitable for utilization in studies evaluating participation of CYP enzymes in metabolism of xenobiotics in various complex biological materials containing both CYP and peroxidase enzymes. Moreover, precaution to prevent misinterpretation of results is necessary in cases when proadifen SKF525A, piperonylbutoxide, diethyldithiocarbamate, ketoconazole, α-naphtoflavone and ellipticine are used in similar studies (as CYP inhibitors in various complex biological materials containing both CYP and peroxidase enzymes), since these chemicals can except of CYP enzymes inhibit also peroxidase-mediated reactions.
- MeSH
- aktivace enzymů účinky léků MeSH
- benzoflavony chemie farmakologie MeSH
- chinidin chemie farmakologie MeSH
- disulfiram chemie farmakologie MeSH
- dithiokarb chemie farmakologie MeSH
- elipticiny chemie farmakologie MeSH
- inhibitory cytochromu P450 * MeSH
- inhibitory enzymů chemie farmakologie MeSH
- ketokonazol chemie farmakologie MeSH
- křenová peroxidasa antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- metyrapon chemie farmakologie MeSH
- piperonylbutoxid chemie farmakologie MeSH
- proadifen chemie farmakologie MeSH
- substrátová specifita účinky léků MeSH
- sulfafenazol chemie farmakologie MeSH
- triazoly chemie farmakologie MeSH
- troleandomycin chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 1-aminobenzotriazole MeSH Prohlížeč
- alpha-naphthoflavone MeSH Prohlížeč
- benzoflavony MeSH
- chinidin MeSH
- disulfiram MeSH
- dithiokarb MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- inhibitory cytochromu P450 * MeSH
- inhibitory enzymů MeSH
- ketokonazol MeSH
- křenová peroxidasa MeSH
- metyrapon MeSH
- piperonylbutoxid MeSH
- proadifen MeSH
- sulfafenazol MeSH
- triazoly MeSH
- troleandomycin MeSH
We investigated cytochrome P450 (P450)-catalyzed metabolism of the important cancer drugs paclitaxel and docetaxel in rat, pig, minipig, and human liver microsomes and cDNA-expressed P450 enzymes. In rat microsomes, paclitaxel was metabolized mainly to C3'-hydroxypaclitaxel (C3'-OHP) and to a lesser extent to C2-hydroxypaclitaxel (C2-OHP), di-hydroxypaclitaxel (di-OHP), and another unknown monohydroxylated paclitaxel. In pig and minipig microsomes, this unknown hydroxypaclitaxel was the main metabolite, whereas C3'-OHP was a minor product. In minipigs, C2-OHP was the next minor product. In human liver microsomes, 6 alpha-hydroxypaclitaxel (6 alpha-OHP) was the main metabolite, followed by C3'-OHP and C2-OHP. Among different cDNA-expressed human P450 enzymes (CYP1A2, 1B1, 2A6, 2C9, 2E1, and 3A4), only CYP3A4 enzyme formed C3'-OHP and C2-OHP. Docetaxel was metabolized in pig, minipig, rat, and human liver microsomes mainly to hydroxydocetaxel (OHDTX), whereas CYP3A-induced rat microsomes produced primarily diastereomeric hydroxyoxazolidinones. Human liver microsomes from 10 different individuals formed OHDTX at different rates correlated with CYP3A4 content. Troleandomycin as a selective inhibitor of CYP3A inhibited the formation of C3'-OHP, C2-OHP, and di-OHP, as well as the unknown OHP produced in rat, minipig, and pig microsomes. In human liver microsomes, troleandomycin inhibited C3'-OHP and C2-OHP formation, and a suitable inhibitor of human CYP2C8, fisetin, strongly inhibited the formation of 6 alpha-OHP, known to be catalyzed by human CYP2C8. In conclusion, the metabolism of docetaxel is the same in all four species, but metabolism of paclitaxel is different, and 6 alpha-OHP remains a uniquely human metabolite. Pigs and minipigs compared with each other formed the same metabolites of paclitaxel.
- MeSH
- docetaxel MeSH
- dospělí MeSH
- druhová specificita MeSH
- flavonoidy farmakologie MeSH
- flavonoly MeSH
- fytogenní protinádorové látky metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- izoenzymy metabolismus MeSH
- jaterní mikrozomy enzymologie MeSH
- kinetika MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- miniaturní prasata MeSH
- mladiství MeSH
- paclitaxel antagonisté a inhibitory metabolismus MeSH
- potkani Wistar MeSH
- prasata MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- taxoidy metabolismus MeSH
- techniky in vitro MeSH
- troleandomycin farmakologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- srovnávací studie MeSH
- Názvy látek
- docetaxel MeSH
- fisetin MeSH Prohlížeč
- flavonoidy MeSH
- flavonoly MeSH
- fytogenní protinádorové látky MeSH
- inhibitory enzymů MeSH
- izoenzymy MeSH
- paclitaxel MeSH
- systém (enzymů) cytochromů P-450 MeSH
- taxoidy MeSH
- troleandomycin MeSH
The flexibility of the structure and compressibility of the respective active site of cytochromes P450 3A4 (CYP3A4) and BM-3 (CYP102) were studied using absorption spectroscopy in the ultraviolet and visual regions. Conformational changes in the overall protein structures of both CYP3A4 and CYP102 due to the effects of temperature and pressure are reversible. However, the enzymes differ in the properties of their active sites. The CYP3A4 enzyme denatures to the inactive P420 form relatively easy, at 3000 bar over half is converted to P420. The compressibility of its active site is lower than that of CYP102 and is greater with the substrate bound, which is in line with the observed lack of a stabilizing effect of the substrate on its conformation under pressure. In contrast, CYP102, although having the most compressible active site among the P450s, possesses a structure that does not denature easily to the inactive (P420) form under pressure. In this respect, it resembles the P450 isolated from acidothermophilic archaebacteria [McLean, M.A., Maves, S.A., Weiss, K.E., Krepich, S. & Sligar, S.G. (1998) Biochem. Biophys. Res. Commun. 252, 166-172].
- MeSH
- bakteriální proteiny * MeSH
- cytochrom P-450 CYP3A MeSH
- Escherichia coli enzymologie MeSH
- hem chemie MeSH
- konformace proteinů MeSH
- NADPH-cytochrom c-reduktasa MeSH
- ohebnost (fyzika) MeSH
- oxid uhelnatý chemie MeSH
- oxygenasy se smíšenou funkcí chemie MeSH
- plazmidy MeSH
- spektrofotometrie MeSH
- stabilita enzymů MeSH
- systém (enzymů) cytochromů P-450 chemie MeSH
- teplota MeSH
- tlak MeSH
- troleandomycin chemie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- CYP3A protein, human MeSH Prohlížeč
- CYP3A4 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- flavocytochrome P450 BM3 monoxygenases MeSH Prohlížeč
- hem MeSH
- NADPH-cytochrom c-reduktasa MeSH
- oxid uhelnatý MeSH
- oxygenasy se smíšenou funkcí MeSH
- systém (enzymů) cytochromů P-450 MeSH
- troleandomycin MeSH
Cytochrome P450 (CYP) of the 3A family (CYP3A) has been detected in minipig liver microsomes by immunochemical screening (Western blotting), revealing bands that co-migrate with human CYP3A4 and 3A5. The nifedipine oxidase activity and testosterone 6beta-hydroxylating activity (specific markers for CYP3A enzymes) of the human liver microsomal and minipig liver microsomal samples were comparable, as were the results of specific inhibition of this activity by triacetyloleandomycin. The presence of CYP1A, 2A, 2C, 2D, and 2E1 marker activities in minipig liver microsomes was found by testing with the respective specific substrates (7-ethoxyresorufin, coumarin, tolbutamide, bufuralol, and chlorzoxazone). 7-Pentoxyresorufin O-depentylase activity (indicative of CYP2B) was absent from minipig as well as human liver microsomal samples. The results indicate that minipigs might be, in many cases, the most suitable experimental animals to predict biotransformation pathways in humans, because the activity of the most important CYP isoform in humans (CYP3A, metabolizing the majority of known drug substrates) is present in minipigs, with comparable levels and activities. Moreover, there is no need to induce CYP enzyme levels.
- MeSH
- antibakteriální látky farmakologie MeSH
- cytochrom P-450 CYP3A MeSH
- izoenzymy metabolismus MeSH
- jaterní mikrozomy enzymologie MeSH
- katalýza MeSH
- lidé MeSH
- miniaturní prasata metabolismus MeSH
- nifedipin antagonisté a inhibitory metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- prasata MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- troleandomycin farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antibakteriální látky MeSH
- CYP3A protein, human MeSH Prohlížeč
- CYP3A4 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- izoenzymy MeSH
- nifedipin MeSH
- systém (enzymů) cytochromů P-450 MeSH
- troleandomycin MeSH
The optimum conditions for the induction of mutants resistant to antibiotics in Brevibacterium flavum ATCC 14067 were determined. UV irradiation at the energy fluence of 6.5 kJ/m2 and N-methyl-N'-nitro-N-nitrosoguanidine (1 mg/mL) at pH 6.0 were used for the induction of mutants. Mutant strains resistant to rifampicin, oleandomycin, streptomycin and erythromycin were prepared.
- MeSH
- antibakteriální látky farmakologie MeSH
- antibiotická rezistence MeSH
- Brevibacterium účinky léků genetika účinky záření MeSH
- erythromycin farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- methylnitronitrosoguanidin farmakologie MeSH
- mutace MeSH
- neomycin farmakologie MeSH
- oleandomycin farmakologie MeSH
- rifampin farmakologie MeSH
- streptomycin farmakologie MeSH
- ultrafialové záření MeSH
- vankomycin farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- erythromycin MeSH
- methylnitronitrosoguanidin MeSH
- neomycin MeSH
- oleandomycin MeSH
- rifampin MeSH
- streptomycin MeSH
- vankomycin MeSH
Among the 345 F. tularensis holarctica strains isolated in Europe, Asia and North America, two variants were found: one sensitive and the other resistant to erythromycin, oleandomycin and lincomycin. These characteristics were not associated with virulence, antigenicity, biochemical activity or source of isolation and displayed high stability in passages in laboratory animals or multiple passages in culture media. The two variants are proposed to be designated as biotype (biovar) I, erythromycin sensitive (erys), and biotype (biovar)II, erythromycin resistant (eryR). A predominance of biotype I was observed for western Europe, eastern Siberia and the Far East, as well as North America, whereas biotype II prevailed in central Europe, the European part of USSR, especially the south, and western Siberia. The distribution of biotype II largely coincided with the habitat area of Arvicola terrestris, from which it was isolated with the highest frequency. Within the areas of biotype II prevalence, erythromycin and other macrolide antibiotics, as well as lincomycin should not be used for tularemia therapy.
- MeSH
- antibiotická rezistence MeSH
- erythromycin farmakologie MeSH
- Francisella tularensis účinky léků izolace a purifikace fyziologie MeSH
- lidé MeSH
- linkomycin farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- oleandomycin farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Dálný východ MeSH
- Evropa MeSH
- SSSR MeSH
- Názvy látek
- erythromycin MeSH
- linkomycin MeSH
- oleandomycin MeSH
- MeSH
- gonorea farmakoterapie MeSH
- hodnocení léčiv MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- oleandomycin aplikace a dávkování analogy a deriváty terapeutické užití MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- klinické zkoušky MeSH
- Názvy látek
- oleandomycin MeSH
- MeSH
- antibiotická rezistence * MeSH
- DNA bakterií * izolace a purifikace MeSH
- erythromycin farmakologie MeSH
- kultivační média MeSH
- mutace MeSH
- oleandomycin farmakologie MeSH
- sérotypizace MeSH
- spektrofotometrie MeSH
- Streptococcus účinky léků růst a vývoj MeSH
- streptomycin farmakologie MeSH
- transformace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií * MeSH
- erythromycin MeSH
- kultivační média MeSH
- oleandomycin MeSH
- streptomycin MeSH
- MeSH
- antibakteriální látky farmakologie MeSH
- chloramfenikol farmakologie MeSH
- erythromycin farmakologie MeSH
- kanamycin farmakologie MeSH
- oleandomycin farmakologie MeSH
- Staphylococcus účinky léků MeSH
- vankomycin farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- chloramfenikol MeSH
- erythromycin MeSH
- kanamycin MeSH
- oleandomycin MeSH
- vankomycin MeSH
- MeSH
- ampicilin farmakologie MeSH
- antibakteriální látky farmakologie MeSH
- cefaloridin farmakologie MeSH
- erythromycin farmakologie MeSH
- gonorea mikrobiologie MeSH
- leukomyciny farmakologie MeSH
- lidé MeSH
- linkomycin farmakologie MeSH
- Neisseria gonorrhoeae účinky léků izolace a purifikace MeSH
- oleandomycin farmakologie MeSH
- penicilin G farmakologie MeSH
- peniciliny farmakologie MeSH
- protinádorové látky farmakologie MeSH
- rezistence na penicilin * MeSH
- streptomycin farmakologie MeSH
- tetracyklin farmakologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Československo MeSH
- Názvy látek
- ampicilin MeSH
- antibakteriální látky MeSH
- cefaloridin MeSH
- erythromycin MeSH
- leukomyciny MeSH
- linkomycin MeSH
- oleandomycin MeSH
- penicilin G MeSH
- peniciliny MeSH
- protinádorové látky MeSH
- streptomycin MeSH
- tetracyklin MeSH