Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research. A way to overcome this is to integrate experimental rare disease data with prior knowledge using network-based methods. Taking this one step further, we hypothesized that combining and analyzing the results from multiple network-based methods could provide data-driven hypotheses of pathogenic mechanisms from multiple perspectives.We analyzed a Huntington's disease transcriptomics dataset using six network-based methods in a collaborative way. These methods either inherently reported enriched annotation terms or their results were fed into enrichment analyses. The resulting significantly enriched Reactome pathways were then summarized using the ontological hierarchy which allowed the integration and interpretation of outputs from multiple methods. Among the resulting enriched pathways, there are pathways that have been shown previously to be involved in Huntington's disease and pathways whose direct contribution to disease pathogenesis remains unclear and requires further investigation.In summary, our study shows that collaborative network analysis approaches are well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from multiple perspectives. Applying different methods to the same case study can uncover different disease mechanisms that would not be apparent with the application of a single method.
- Klíčová slova
- Collaborative analysis, Huntington’s disease, Network analysis, Rare disease,
- MeSH
- genové regulační sítě MeSH
- Huntingtonova nemoc * genetika MeSH
- lidé MeSH
- stanovení celkové genové exprese * metody MeSH
- transkriptom * MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a mutation in the HTT gene. To generate human-induced pluripotent stem cells (hiPSCs), we used dermal fibroblasts from 1 healthy adult control (K-Pic2), 1 HD manifest patient (M-T2), 1 healthy juvenile control (jK-N1), and 1 juvenile HD patient (jHD-V1). HD stage of patients was assessed by neurological tests and donors were without comorbidities and were non-smokers. Characterization showed that the obtained hiPSCs have the same number of CAG repeats as the parental fibroblast lines, express pluripotency markers and have the ability to differentiate into all 3 germ layers.
BACKGROUND AND PURPOSE: Motor speech alterations are a prominent feature of clinically manifest Huntington's disease (HD). Objective acoustic analysis of speech can quantify speech alterations. It is currently unknown, however, at what stage of HD speech alterations can be reliably detected. We aimed to explore the patterns and extent of speech alterations using objective acoustic analysis in HD and to assess correlations with both rater-assessed phenotypical features and biological determinants of HD. METHODS: Speech samples were acquired from 44 premanifest (29 pre-symptomatic and 15 prodromal) and 25 manifest HD gene expansion carriers, and 25 matched healthy controls. A quantitative automated acoustic analysis of 10 speech dimensions was performed. RESULTS: Automated speech analysis allowed us to differentiate between participants with HD and controls, with areas under the curve of 0.74 for pre-symptomatic, 0.92 for prodromal, and 0.97 for manifest stages. In addition to irregular alternating motion rates and prolonged pauses seen only in manifest HD, both prodromal and manifest HD displayed slowed articulation rate, slowed alternating motion rates, increased loudness variability, and unstable steady-state position of articulators. In participants with premanifest HD, speech alteration severity was associated with cognitive slowing (r = -0.52, p < 0.001) and the extent of bradykinesia (r = 0.43, p = 0.004). Speech alterations correlated with a measure of exposure to mutant gene products (CAG-age-product score; r = 0.60, p < 0.001). CONCLUSION: Speech abnormalities in HD are associated with other motor and cognitive deficits and are measurable already in premanifest stages of HD. Therefore, automated speech analysis might represent a quantitative HD biomarker with potential for assessing disease progression.
- Klíčová slova
- Huntington's disease, acoustic analysis, hyperkinetic dysarthria, prodromal biomarker, speech,
- MeSH
- biologické markery MeSH
- Huntingtonova nemoc * komplikace genetika psychologie MeSH
- kognitivní poruchy * komplikace MeSH
- lidé MeSH
- průřezové studie MeSH
- řeč MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
Huntington's disease (HD) is a progressive neurodegenerative disorder with autosomal-dominant heritability that affect the central nervous system and peripheral tissues. The human-induced pluripotent stem cells (hiPSC) lines were generated from dermal fibroblasts of patients without comorbidities, non-smokers, at the pre-manifest (IIMCBi004-A), early-manifest (IIMCBi005-A), and manifest (IIMCBi006-A) HD stage assessed by neurological tests, as well as from a healthy donor (IIMCBi003-A). Characterization showed that the obtained hiPSC lines contained different CAG repeats consistent with the number of CAG repeats in original fibroblasts. Moreover, hiPSCs expressed pluripotency markers and were able to differentiate into three-germ layers in vitro.
- MeSH
- Huntingtonova nemoc * genetika MeSH
- indukované pluripotentní kmenové buňky * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.
- Klíčová slova
- Huntington’s disease, fibroblasts, mitochondrial dysfunction, mitochondrial network, oxidative phosphorylation system, ultrastructure,
- MeSH
- dospělí MeSH
- fibroblasty metabolismus MeSH
- Huntingtonova nemoc * genetika metabolismus patologie MeSH
- lidé MeSH
- mitochondrie patologie MeSH
- neurodegenerativní nemoci * metabolismus patologie MeSH
- neurony patologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Huntington disease (HD) is the most frequent monogenetic neurodegenerative disease and can be unequivocally diagnosed even in the preclinical stage, at least in all individuals in whom the CAG expansion mutation in the huntingtin gene (HTT) is in the range of full penetrance. Therefore, important preconditions for an intervention early in the disease process are met, rendering modification of the course of the disease in a clinically meaningful way possible. In this respect, HD can be viewed as a model disorder for exploring neuroprotective treatment approaches. In the past emphasis was placed on the compensation of a suspected neurotransmitter deficit (GABA) analogous to Parkinson's disease and on classical neuroprotective strategies to influence hypothetical common pathways in neurodegenerative diseases (e.g., excitotoxicity, mitochondrial dysfunction, oxidative stress). With the discovery of the causative HTT mutation in 1993, therapeutic research increasingly focused on intervening as proximally as possible in the chain of pathophysiological events. Currently, an important point of intervention is the HTT mRNA with the aim of reducing the continued production of mutant huntingtin gene products and thus relieving the body of their detrimental actions. To this end, various treatment modalities (single-stranded DNA and RNA, divalent RNA and zinc finger repressor complexes, orally available splice modulators) were developed and are currently in clinical trials (phases I-III) or in late stages of preclinical development. In addition, there is the notion that it may be possible to modify the length of the somatically unstable CAG mutation, i.e. its increase in the brain during the lifetime, thereby slowing the progression of HD.
Die Huntington-Krankheit (HK) ist die häufigste monogenetische neurodegenerative Erkrankung und kann bereits im präklinischen Stadium zweifelsfrei diagnostiziert werden, zumindest in allen Fällen, bei denen die CAG-Expansionsmutation im Huntingtin-Gen (HTT) im Bereich der vollen Penetranz liegt. Wichtige Voraussetzungen für eine früh im Krankheitsprozess einsetzende und deshalb den weiteren Verlauf der Krankheit in klinisch relevanter Weise modifizierende Therapie sind damit gegeben und machen die HK zu einer Modellerkrankung für neuroprotektive Behandlungsansätze. In der Vergangenheit lag der Schwerpunkt auf dem Ausgleich vermuteter Neurotransmitterdefizite (GABA) analog zur Parkinson-Erkrankung und auf klassischen neuroprotektiven Strategien zur Beeinflussung hypothetischer gemeinsamer Endstrecken neurodegenerativer Erkrankungen (z. B. Exzitotoxizität, mitochondriale Dysfunktion, oxidativer Stress etc.). Mit der Entdeckung der krankheitsverursachenden HTT-Mutation im Jahr 1993 fokussierte sich die Therapieforschung zunehmend darauf, soweit proximal wie möglich in die pathophysiologische Ereigniskette einzugreifen. Ein wichtiger Ansatzpunkt ist hier die HTT-mRNA mit dem Ziel, die Nachproduktion mutierter Huntingtin-Genprodukte zu senken und damit den Körper von deren schädigenden Auswirkungen zu entlasten; zu diesem Zweck sind verschiedene Behandlungsmodalitäten (einzelsträngige DNA und RNA, divalente RNA und Zinkfinger-Repressorkomplexe, oral verfügbare Spleißmodulatoren) entwickelt worden, die sich in der klinischen Prüfung (Phase I–III) oder in späten Stadien der präklinischen Entwicklung befinden. Zudem zeichnet sich ab, dass es möglich sein könnte, die Länge der somatisch instabilen, d. h. über die Lebenszeit v. a. im Hirngewebe zunehmende CAG-Mutation selbst zu beeinflussen und die Progression der HK hierdurch zu bremsen.
- Klíčová slova
- Antisense oligonucleotide, Disease modification, Gene therapy, HTT mRNA, Neuroprotection,
- MeSH
- antisense oligonukleotidy MeSH
- Huntingtonova nemoc * diagnóza farmakoterapie genetika MeSH
- lidé MeSH
- mozek MeSH
- mutace genetika MeSH
- neurodegenerativní nemoci * MeSH
- protein huntingtin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antisense oligonukleotidy MeSH
- protein huntingtin MeSH
Huntington's disease (HD), as well as Parkinson's disease and Alzheimer's disease, belong to a group of neurodegenerative diseases characterized by common features, such as the progressive loss of neurons and the presence of pathogenic forms of misfolded protein aggregates. A quality control system such as autophagy is crucial for the clearance of protein aggregates and dysfunctional organelles and thus essential for the maintenance of neuronal homeostasis. The constant high energy demand of neuronal tissue links neurodegeneration to mitochondria. Inefficient removal of damaged mitochondria is thought to contribute to the pathogenesis of neurodegenerative diseases such as HD. In addition, direct involvement of the huntingtin protein in the autophagic machinery has been described. In this review, we focus on mitophagy, a selective form of autophagy responsible for mitochondrial turnover. We also discuss the relevance of pharmacological regulation of mitophagy in the future therapeutic approach to neurodegenerations, including HD.
- Klíčová slova
- Huntington's disease, Mitochondria, Mitophagy, Mitophagy adaptors, Pharmacological induction of mitophagy,
- MeSH
- biologické přípravky terapeutické užití MeSH
- Huntingtonova nemoc farmakoterapie genetika metabolismus patologie MeSH
- lidé MeSH
- mitochondrie genetika metabolismus patologie MeSH
- mitofagie fyziologie MeSH
- neurony metabolismus patologie MeSH
- neuroprotektivní látky terapeutické užití MeSH
- protein huntingtin genetika metabolismus MeSH
- proteinové agregáty fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky MeSH
- neuroprotektivní látky MeSH
- protein huntingtin MeSH
- proteinové agregáty MeSH
Huntingtin (HTT)-lowering therapies hold promise to slow down neurodegeneration in Huntington's disease (HD). Here, we assessed the translatability and long-term durability of recombinant adeno-associated viral vector serotype 5 expressing a microRNA targeting human HTT (rAAV5-miHTT) administered by magnetic resonance imaging-guided convention-enhanced delivery in transgenic HD minipigs. rAAV5-miHTT (1.2 × 1013 vector genome (VG) copies per brain) was successfully administered into the striatum (bilaterally in caudate and putamen), using age-matched untreated animals as controls. Widespread brain biodistribution of vector DNA was observed, with the highest concentration in target (striatal) regions, thalamus, and cortical regions. Vector DNA presence and transgene expression were similar at 6 and 12 months after administration. Expression of miHTT strongly correlated with vector DNA, with a corresponding reduction of mutant HTT (mHTT) protein of more than 75% in injected areas, and 30 to 50% lowering in distal regions. Translational pharmacokinetic and pharmacodynamic measures in cerebrospinal fluid (CSF) were largely in line with the effects observed in the brain. CSF miHTT expression was detected up to 12 months, with CSF mHTT protein lowering of 25 to 30% at 6 and 12 months after dosing. This study demonstrates widespread biodistribution, strong and durable efficiency of rAAV5-miHTT in disease-relevant regions in a large brain, and the potential of using CSF analysis to determine vector expression and efficacy in the clinic.
- MeSH
- genetická terapie MeSH
- genetické vektory genetika MeSH
- Huntingtonova nemoc * genetika terapie MeSH
- lidé MeSH
- mikro RNA * metabolismus MeSH
- miniaturní prasata metabolismus MeSH
- modely nemocí na zvířatech MeSH
- prasata MeSH
- protein huntingtin genetika metabolismus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA * MeSH
- protein huntingtin MeSH
Genetically modified rodent models of Huntington's disease (HD) have been especially valuable to our understanding of HD pathology and the mechanisms by which the mutant HTT gene alters physiology. However, due to inherent differences in genetics, neuroanatomy, neurocircuitry and neurophysiology, animal models do not always faithfully or fully recapitulate human disease features or adequately predict a clinical response to treatment. Therefore, conducting translational studies of candidate HD therapeutics only in a single species (i.e. mouse disease models) may not be sufficient. Large animal models of HD have been shown to be valuable to the HD research community and the expectation is that the need for translational studies that span rodent and large animal models will grow. Here, we review the large animal models of HD that have been created to date, with specific commentary on differences between the models, the strengths and disadvantages of each, and how we can advance useful models to study disease pathophysiology, biomarker development and evaluation of promising therapeutics.
- Klíčová slova
- Minipigs, nonhuman primates, sheep, therapeutics,
- MeSH
- geneticky modifikovaná zvířata * MeSH
- Huntingtonova nemoc * genetika patologie patofyziologie terapie MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech * MeSH
- ovce MeSH
- prasata MeSH
- primáti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Although the highest expression of mutant huntingtin (mtHtt) was observed in the brain, its negative effects were also apparent in other tissues. Specifically, mtHtt impairs metabolic homeostasis and causes transcriptional dysregulation in adipose tissue. Adipogenic differentiation can be induced by the activation of two transcription factors: CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). These same transcription factors were found to be compromised in some tissues of Huntington's disease (HD) mouse models and in lymphocytes of HD patients. OBJECTIVE: This study investigated the adipogenic potential of mesenchymal stem cells (MSCs) derived from transgenic Huntington's disease (TgHD) minipigs expressing human mtHtt (1-548aa) containing 124 glutamines. Two differentiation conditions were used, employing PPARγ agonist rosiglitazone or indomethacin. METHODS: Bone marrow MSCs were isolated from TgHD and WT minipig siblings and compared by their cluster of differentiation using flow cytometry. Their adipogenic potential in vitro was analyzed using quantitative immunofluorescence and western blot analysis of transcription factors and adipogenic markers. RESULTS: Flow cytometry analysis did not reveal any significant difference between WT and TgHD MSCs. Nevertheless, following differentiation into adipocytes, the expression of CEBPα nuclear, PPARγ and adipogenic marker FABP4/AP2 were significantly lower in TgHD cells compared to WT cells. In addition, we proved both rosiglitazone and indomethacin to be efficient for adipogenic differentiation of porcine MSCs, with rosiglitazone showing a better adipogenic profile. CONCLUSIONS: We demonstrated a negative influence of mtHtt on adipogenic differentiation of porcine MSCs in vitro associated with compromised expression of adipogenic transcription factors.
- Klíčová slova
- Huntington’s disease, adipogenesis, mesenchymal stem cells, minipigs,
- MeSH
- adipogeneze * MeSH
- buňky kostní dřeně cytologie MeSH
- geneticky modifikovaná zvířata genetika MeSH
- Huntingtonova nemoc genetika patologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie MeSH
- prasata MeSH
- transkripční faktory genetika MeSH
- tukové buňky cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transkripční faktory MeSH