Nejvíce citovaný článek - PubMed ID 11835305
Pathogenic microbes contribute to several major global diseases that kill millions of people every year. Bloodstream infections caused by these microbes are associated with high morbidity and mortality rates, which are among the most common causes of hospitalizations. The search for the "Holy Grail" in clinical diagnostic microbiology, a reliable, accurate, low cost, real-time, and easy-to-use diagnostic method, is one of the essential issues in clinical practice. These very critical conditions can be met by Raman tweezers in combination with advanced analysis methods. Here, we present a proof-of-concept study based on Raman tweezers combined with spectral mixture analysis that allows for the identification of microbial strains directly from human blood serum without user intervention, thus eliminating the influence of a data analyst.
- Publikační typ
- časopisecké články MeSH
Many ecological experiments are based on the extraction and downstream analyses of microorganisms from different environmental samples. Due to its high throughput, cost-effectiveness and rapid performance, Matrix Assisted Laser Desorption/Ionization Mass Spectrometry with Time-of-Flight detector (MALDI-TOF MS), which has been proposed as a promising tool for bacterial identification and classification, could be advantageously used for dereplication of recurrent bacterial isolates. In this study, we compared whole-cell MALDI-TOF MS-based analyses of 49 bacterial cultures to two well-established bacterial identification and classification methods based on nearly complete 16S rRNA gene sequence analyses: a phylotype-based approach, using a closest type strain assignment, and a sequence similarity-based approach involving a 98.65% sequence similarity threshold, which has been found to best delineate bacterial species. Culture classification using reference-based MALDI-TOF MS was comparable to that yielded by phylotype assignment up to the genus level. At the species level, agreement between 16S rRNA gene analysis and MALDI-TOF MS was found to be limited, potentially indicating that spectral reference databases need to be improved. We also evaluated the mass spectral similarity technique for species-level delineation which can be used independently of reference databases. We established optimal mass spectral similarity thresholds which group MALDI-TOF mass spectra of common environmental isolates analogically to phylotype- and sequence similarity-based approaches. When using a mass spectrum similarity approach, we recommend a mass range of 4-10 kDa for analysis, which is populated with stable mass signals and contains the majority of phylotype-determining peaks. We show that a cosine similarity (CS) threshold of 0.79 differentiate mass spectra analogously to 98.65% species-level delineation sequence similarity threshold, with corresponding precision and recall values of 0.70 and 0.73, respectively. When matched to species-level phylotype assignment, an optimal CS threshold of 0.92 was calculated, with associated precision and recall values of 0.83 and 0.64, respectively. Overall, our research indicates that a similarity-based MALDI-TOF MS approach can be routinely used for efficient dereplication of isolates for downstream analyses, with minimal loss of unique organisms. In addition, MALDI-TOF MS analysis has further improvement potential unlike 16S rRNA gene analysis, whose methodological limits have reached a plateau.
- Klíčová slova
- 16S rRNA gene, MALDI BioTyper, MALDI-TOF mass spectrometry (MS), bacterial identification, bacterial isolation, dereplication of isolates, species delineation,
- Publikační typ
- časopisecké články MeSH
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) -based identification of bacteria and fungi significantly changed the diagnostic process in clinical microbiology. We describe here a novel technique for bacterial and yeast deposition on MALDI target using an automated workflow resulting in an increase of the microbes' score of MALDI identification. We also provide a comparison of four different sample preparation methods. In the first step of the study, 100 Gram-negative bacteria, 100 Gram-positive bacteria, 20 anaerobic bacteria and 20 yeasts were spotted on the MALDI target using manual deposition, semi-extraction, wet deposition onto 70% formic acid and by automatic deposition using MALDI Colonyst. The lowest scores were obtained by manual toothpick spotting which significantly differ from other methods. Identification score of semi-extraction, wet deposition and automatic wet deposition did not significantly differ using calculated relative standard deviation (RSD). Nevertheless, the best results with low error rate have been observed using MALDI Colonyst robot. The second step of validation included processing of 542 clinical isolates in routine microbiological laboratory by a toothpick direct spotting, on-plate formic acid extraction (for yeasts) and automatic deposition using MALDI Colonyst. Validation in routine laboratory process showed significantly higher identification scores obtained using automated process compared with standard manual deposition in all tested microbial groups (Gram-positive, Gram-negative, anaerobes, and yeasts). As shown by our data, automatic colony deposition on MALDI target results in an increase of MALDI-TOF MS identification scores and reproducibility.
Several biochemical and molecular methods were used for discrimination of four Lactobacillus reuteri strains isolated from goatling and lamb stomach mucosa. Internal transcribed spacer (ITS)-PCR method and protein analysis by SDS-PAGE and MALDI-TOF showed to be suitable for strain discrimination whereas ITS-PCR/RFLP and enterobacterial repetitive intergenic consensus (ERIC)-PCR were not strain specific. The used methods differentiated tested strains into distinct groups; however, the location of strains in groups varied. Consistency in results was observed in the case of L. reuteri E and L. reuteri KO4m that were clustered into the same groups using all techniques, except of MALDI-TOF MS. The last one grouped goatling strains and lamb isolate into separate clusters. All investigated methods, except of ITS-PCR/RFLP and ERIC-PCR, were assessed as appropriate for distinguishing of L. reuteri strains.
- MeSH
- bakteriální proteiny analýza MeSH
- bakteriologické techniky metody MeSH
- DNA bakterií chemie genetika MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- kozy MeSH
- Limosilactobacillus reuteri klasifikace genetika izolace a purifikace fyziologie MeSH
- mezerníky ribozomální DNA chemie genetika MeSH
- ovce MeSH
- polymerázová řetězová reakce MeSH
- reprodukovatelnost výsledků MeSH
- shluková analýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- žaludeční sliznice mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
- mezerníky ribozomální DNA MeSH
Biochemical and serological profiles of isolates of Plesiomonas shigelloides were assayed using standard procedures in isolates from various clinical samples. Seventy-four isolates, including P. shigelloides type strain, were further characterized by MALDI-TOF MS using 3-methoxy-4-hydroxycinnamic acid as matrix. Multiple ions in the 3- to 12-kDa mass range were found in the spectra of each strain, from which the "species-identifying" unique biomarker ions were identified. After creating the species-specific patterns, a spectral database was generated for reliable, rapid, reproducible and accurate identification of Plesiomonas strains. The classical strain description (biochemical and serological) was thus complemented with the metabolic (proteomic) characterization.
- MeSH
- bakteriologické techniky metody MeSH
- gramnegativní bakteriální infekce mikrobiologie MeSH
- Plesiomonas chemie klasifikace imunologie izolace a purifikace MeSH
- sérotypizace metody MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Publikační typ
- časopisecké články MeSH
The Campylobacter species strains (n = 42; isolated from clinical samples and deposited in Czech National Collection of Type Cultures, Prague) originally phenotypically (and biochemically) identified as Campylobacter jejuni were re-classified using molecular biological and mass spectrometric methods. Whole-cell MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) separated the isolates into two genetically related strains--C. jejuni (n = 26) and C. coli (n = 16) and, moreover, distinguished the intimate details in the group of tested strains. It also made it possible to create the MALDI-TOF MS dendrogram; similarly, the spectral characteristics were used for the 3D cluster analysis. Polymerase chain reaction (PCR) confirmed the results obtained by mass spectrometry. Both methods (PCR and MALDI-TOF MS) gave the same results which supports their suitability in the rapid and accurate Campylobacter-species determination.
- MeSH
- Campylobacter coli klasifikace genetika MeSH
- Campylobacter jejuni klasifikace genetika MeSH
- DNA bakterií analýza izolace a purifikace MeSH
- druhová specificita MeSH
- feces mikrobiologie MeSH
- kočky MeSH
- lidé MeSH
- polymerázová řetězová reakce * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- techniky typizace bakterií * MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- DNA bakterií MeSH