Nejvíce citovaný článek - PubMed ID 12379781
Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel's anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel's early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
- Klíčová slova
- FISH, NGS, TRAP, eukaryotic tree of life, interstitial telomere sequences, retroelements, satellite, subtelomere structure, telomerase RNA, telomere evolution,
- MeSH
- DNA MeSH
- lidé MeSH
- repetitivní sekvence nukleových kyselin MeSH
- satelitní DNA * MeSH
- sekvence nukleotidů MeSH
- telomery * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- satelitní DNA * MeSH
Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein-protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.
- Klíčová slova
- ARMC6, Armadillo/β-catenin-like repeat, AtTERT, Homologous recombination, Protein–protein interaction, Telomerase activity,
- MeSH
- Arabidopsis enzymologie genetika MeSH
- holoenzymy MeSH
- lidé MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny s doménou armadillo genetika metabolismus MeSH
- reportérové geny MeSH
- techniky dvojhybridového systému MeSH
- telomerasa genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ARMC6 protein, human MeSH Prohlížeč
- holoenzymy MeSH
- proteiny huseníčku MeSH
- proteiny s doménou armadillo MeSH
- telomerasa MeSH
Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.
- Klíčová slova
- 45S ribosomal DNA, Arabidopsis thaliana, Chromatin assembly factor, Intergenic spacer, Nucleolus organizer region, rDNA rearrangements,
- MeSH
- Arabidopsis genetika MeSH
- faktor 1 pro uspořádání chromatinu genetika MeSH
- genetická variace genetika MeSH
- mezerníky ribozomální DNA genetika MeSH
- mutace MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- RNA ribozomální genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 1 pro uspořádání chromatinu MeSH
- mezerníky ribozomální DNA MeSH
- RNA ribozomální MeSH
- RNA, ribosomal, 45S MeSH Prohlížeč
Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs) may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation toward distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich) and ARRET (C-rich) were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.
- Klíčová slova
- Ballantinia antipoda, DNA methylation, Nicotiana tabacum, chromatin, epigenetics, histone modifications, telomere,
- Publikační typ
- časopisecké články MeSH
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are important for the maintenance of genomic stability. Telomeres were considered as typical heterochromatic regions, but in light of recent results, this view should be reconsidered. Asymmetrically located cytosines in plant telomeric DNA repeats may be substrates for a DNA methyltransferase enzyme and indeed, it was shown that these repeats are methylated. Here, we analyse the methylation of telomeric cytosines and the length of telomeres in Arabidopsis thaliana methylation mutants (met 1-3 and ddm 1-8), and in their wild-type siblings that were germinated in the presence of hypomethylation drugs. Our results show that cytosine methylation in telomeric repeats depends on the activity of MET1 and DDM1 enzymes. Significantly shortened telomeres occur in later generations of methylation mutants as well as in plants germinated in the presence of hypomethylation drugs, and this phenotype is stably transmitted to the next plant generation. A possible role of compromised in vivo telomerase action in the observed telomere shortening is hypothesized based on telomere analysis of hypomethylated telomerase knockout plants. Results are discussed in connection with previous data in this field obtained using different model systems.
- MeSH
- Arabidopsis enzymologie genetika metabolismus MeSH
- cytosin metabolismus MeSH
- homeostáza telomer MeSH
- metylace DNA * MeSH
- repetitivní sekvence nukleových kyselin MeSH
- rostliny genetika metabolismus MeSH
- telomerasa metabolismus MeSH
- telomery chemie metabolismus MeSH
- zkracování telomer * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytosin MeSH
- telomerasa MeSH
Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap, we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: 1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; 2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; 3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; and 4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.
- MeSH
- DNA řas genetika MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- genom MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- sekvence nukleotidů MeSH
- tandemové repetitivní sekvence MeSH
- telomery genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA řas MeSH
Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5' end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.
- MeSH
- alternativní sestřih MeSH
- exony MeSH
- genetická transkripce MeSH
- genetické lokusy MeSH
- genom rostlinný MeSH
- genová přestavba MeSH
- introny MeSH
- izoformy RNA MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- pořadí genů MeSH
- pseudogeny MeSH
- repetitivní sekvence nukleových kyselin MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- tabák genetika MeSH
- telomerasa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izoformy RNA MeSH
- telomerasa MeSH
Telomeres, which form the protective ends of eukaryotic chromosomes, are a ubiquitous and conserved structure of eukaryotic genomes but the basic structural unit of most telomeres, a repeated minisatellite motif with the general consensus sequence T(n)A(m)G(o), may vary between eukaryotic groups. Previous studies on several species of green algae revealed that this group exhibits at least two types of telomeric sequences, a presumably ancestral type shared with land plants (Arabidopsis type, TTTAGGG) and conserved in, for example, Ostreococcus and Chlorella species, and a novel type (Chlamydomonas type, TTTTAGGG) identified in Chlamydomonas reinhardtii. We have employed several methodical approaches to survey the diversity of telomeric sequences in a phylogenetically wide array of green algal species, focusing on the order Chlamydomonadales. Our results support the view that the Arabidopsis-type telomeric sequence is ancestral for green algae and has been conserved in most lineages, including Mamiellophyceae, Chlorodendrophyceae, Trebouxiophyceae, Sphaeropleales, and most Chlamydomonadales. However, within the Chlamydomonadales, at least two independent evolutionary changes to the Chlamydomonas type occurred, specifically in a subgroup of the Reinhardtinia clade (including C. reinhardtii and Volvox carteri) and in the Chloromonadinia clade. Furthermore, a complex structure of telomeric repeats, including a mix of the ancestral Arabidopsis-type motifs and derived motifs identical to the human-type telomeric repeats (TTAGGG), was found in the chlamydomonadalean clades Dunaliellinia and Stephanosphaeria. Our results indicate that telomere evolution in green algae, particularly in the order Chlamydomonadales, is far more dynamic and complex than thought before. General implications of our findings for the mode of telomere evolution are discussed.
Telomere homeostasis is regulated at multiple levels, including the local chromatin structure of telomeres and subtelomeres. Recent reports demonstrated that a decrease in repressive chromatin marks, such as levels of cytosine methylation in subtelomeric regions, results in telomere elongation in mouse cells. Here we show that a considerable fraction of cytosines is methylated not only in subtelomeric, but also in telomeric DNA of tobacco BY-2 cells. Drug-induced hypomethylation (demonstrated at subtelomeric, telomeric, and global DNA levels) results in activation of telomerase. However, in contrast to mouse cells, the decrease in 5-methylcytosine levels and upregulation of telomerase do not result in any changes of telomere lengths. These results demonstrate the involvement of epigenetic mechanisms in the multilevel process of regulation of telomerase activity in plant cells and, at the same time, they indicate that changes in telomerase activity can be overridden by other factors governing telomere length stability.
- MeSH
- adenin analogy a deriváty farmakologie MeSH
- aktivace enzymů účinky léků MeSH
- cytidin analogy a deriváty farmakologie MeSH
- DNA rostlinná chemie účinky léků MeSH
- epigeneze genetická MeSH
- genetická transkripce účinky léků MeSH
- kultivované buňky MeSH
- metylace DNA účinky léků MeSH
- nukleozomy účinky léků fyziologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- tabák cytologie účinky léků genetika metabolismus MeSH
- telomerasa metabolismus MeSH
- telomery chemie účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 9-(2,3-dihydroxypropyl)adenine MeSH Prohlížeč
- adenin MeSH
- cytidin MeSH
- DNA rostlinná MeSH
- nukleozomy MeSH
- pyrimidin-2-one beta-ribofuranoside MeSH Prohlížeč
- rostlinné proteiny MeSH
- telomerasa MeSH