Nejvíce citovaný článek - PubMed ID 1281983
Immunological discrimination of beta-tubulin isoforms in developing mouse brain. Post-translational modification of non-class-III beta-tubulins
BACKGROUND: G protein-coupled receptor kinase-interacting proteins (GITs) function as GTPase-activating proteins (GAPs) for small GTPases of the ADP-ribosylation factor (Arf) family. While GIT proteins (GIT1 and GIT2) regulate both cell migration and microtubule organization, their corresponding regulatory mechanisms in glioblastoma cells remain largely unknown. To further investigate their role in microtubule modulation, we examined the function of GITs in microtubule nucleation and the involvement of protein kinase C (PKC) in this process. METHODS: Glioblastoma cell lines with depleted GIT protein levels were generated using shRNA lentiviral vectors. The cellular localization of GITs was visualized by immunofluorescence microscopy, microtubule nucleation was analyzed using time-lapse imaging, and cell migration was assessed through a wound healing assay. Phosphomimetic and non-phosphorylatable variants of GIT2 were prepared by site-directed mutagenesis. Immunoprecipitation, pull-down experiments, and kinase assays in the presence of PKC inhibitors were used to study protein interactions. RESULTS: Both GIT1 and GIT2 associate with proteins of the γ-tubulin ring complexes (γTuRCs), the primary microtubule nucleators, and localize to centrosomes. Depletion of GIT2 enhances centrosomal microtubule nucleation and has a more pronounced, yet opposite, effect on this process compared to GIT1. In contrast, the depletion of both GIT1 and GIT2 similarly affects cell migration. The N-terminal ArfGAP domain of GIT2 associates with centrosomes, regulates microtubule nucleation, and is phosphorylated by PKC, which modulates this process. We identified serine 46 (S46) on the ArfGAP domain as a PKC phosphorylation site and demonstrated that phosphorylation of GIT2 at S46 promotes microtubule nucleation. CONCLUSIONS: We propose that GIT2 phosphorylation provides a novel regulatory mechanism for microtubule nucleation in glioblastoma cells, contributing to their invasive properties.
- Klíčová slova
- Centrosomes, G protein-coupled receptor kinase-interacting proteins (GITs), Glioblastoma cells, Microtubule nucleation, Protein kinase C (PKC),
- Publikační typ
- časopisecké články MeSH
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
- Klíčová slova
- microtubule nucleation, αβ-tubulin dimer, γ-tubulin functions, γ-tubulin isotypes, γ-tubulin ring complexes (γ-TuRC),
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
- Klíčová slova
- cancers, microtubule nucleation, γ-tubulin complexes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The antigen-mediated activation of mast cells initiates signaling events leading to their degranulation, to the release of inflammatory mediators, and to the synthesis of cytokines and chemokines. Although rapid and transient microtubule reorganization during activation has been described, the molecular mechanisms that control their rearrangement are largely unknown. Microtubule nucleation is mediated by γ-tubulin complexes. In this study, we report on the regulation of microtubule nucleation in bone marrow-derived mast cells (BMMCs) by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1; Ptpn6). Reciprocal immunoprecipitation experiments and pull-down assays revealed that SHP-1 is present in complexes containing γ-tubulin complex proteins and protein tyrosine kinase Syk. Microtubule regrowth experiments in cells with deleted SHP-1 showed a stimulation of microtubule nucleation, and phenotypic rescue experiments confirmed that SHP-1 represents a negative regulator of microtubule nucleation in BMMCs. Moreover, the inhibition of the SHP-1 activity by inhibitors TPI-1 and NSC87877 also augmented microtubule nucleation. The regulation was due to changes in γ-tubulin accumulation. Further experiments with antigen-activated cells showed that the deletion of SHP-1 stimulated the generation of microtubule protrusions, the activity of Syk kinase, and degranulation. Our data suggest a novel mechanism for the suppression of microtubule formation in the later stages of mast cell activation.
- Klíčová slova
- SHP-1 tyrosine phosphatase, bone marrow-derived mast cells, cell activation, microtubule nucleation, γ-tubulin complexes,
- MeSH
- degranulace buněk MeSH
- HEK293 buňky MeSH
- kinasa Syk metabolismus MeSH
- lidé MeSH
- mastocyty cytologie metabolismus MeSH
- MFC-7 buňky MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- tubulin metabolismus MeSH
- tyrosinfosfatasa nereceptorového typu 6 antagonisté a inhibitory fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kinasa Syk MeSH
- Ptpn6 protein, mouse MeSH Prohlížeč
- Syk protein, mouse MeSH Prohlížeč
- tubulin MeSH
- tyrosinfosfatasa nereceptorového typu 6 MeSH
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca(2+). Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling.
- Klíčová slova
- actins, intermediate filaments, mast cell activation, microfilaments, microtubules, signal transduction, tubulins, vimentin,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The function of the cortical microtubules, composed of alphabeta-tubulin heterodimers, is linked to their organizational state which is subject to spatial and temporal modulation by environmental cues. The role of tubulin posttranslational modifications in these processes is largely unknown. Although antibodies against small tubulin regions represent useful tool for studying molecular configuration of microtubules, data on the exposure of tubulin epitopes on plant microtubules are still limited. RESULTS: Using homology modeling we have generated an Arabidopsis thaliana microtubule protofilament model that served for the prediction of surface exposure of five beta-tubulin epitopes as well as tyrosine residues. Peptide scans newly disclosed the position of epitopes detected by antibodies 18D6 (beta1-10), TUB2.1 (beta426-435) and TU-14 (beta436-445). Experimental verification of the results by immunofluorescence microscopy revealed that the exposure of epitopes depended on the mode of fixation. Moreover, homology modeling showed that only tyrosines in the C-terminal region of beta-tubulins (behind beta425) were exposed on the microtubule external side. Immunofluorescence microscopy revealed tyrosine phosphorylation of microtubules in plant cells, implying that beta-tubulins could be one of the targets for tyrosine kinases. CONCLUSIONS: We predicted surface exposure of five beta-tubulin epitopes, as well as tyrosine residues, on the surface of A. thaliana microtubule protofilament model, and validated the obtained results by immunofluorescence microscopy on cortical microtubules in cells.The results suggest that prediction of epitope exposure on microtubules by means of homology modeling combined with site-directed antibodies can contribute to a better understanding of the interactions of plant microtubules with associated proteins.
- MeSH
- Arabidopsis imunologie MeSH
- epitopy imunologie MeSH
- fluorescenční mikroskopie MeSH
- mapování epitopu metody MeSH
- mikrotubuly imunologie MeSH
- molekulární modely MeSH
- monoklonální protilátky imunologie MeSH
- proteiny huseníčku imunologie MeSH
- tubulin imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epitopy MeSH
- monoklonální protilátky MeSH
- proteiny huseníčku MeSH
- tubulin MeSH
Many of the highly organized microtubular arrangements in ciliates are located in the cortical area containing membrane vesicles and vacuoles. In Tetrahymena thermophila and Paramecium caudatum, immunofluorescence microscopy with the monoclonal antibody TU-06, directed against beta-tubulin, revealed distinct staining of this cortical region alone, while the cilia and other microtubular structures were unstained. The specificity of the antibody was confirmed by immunoblotting and by preabsorption of the antibody with purified tubulin. Double-label immunofluorescence with antibodies against gamma-tubulin, detyrosinated alpha-tubulin, and centrin showed that the TU-06 epitope is localized outside the basal body region. This was also confirmed by immunogold electron microscopy of thin sections. Proteolytic digestion of porcine brain beta-tubulin combined with a peptide scan of immobilized, overlapping peptides disclosed that the epitope was in the beta-tubulin region beta81-95, a region which is phylogenetically highly conserved. As known posttranslational modifications of beta-tubulin are located outside this area, the observed staining pattern cannot be interpreted as evidence of subcellular sequestration of modified tubulin. The limited distribution of the epitope could rather reflect the dependence of TU-06 epitope exposition on conformations of tubulin molecules in microtubule arrangements or on differential masking by interacting proteins.
- MeSH
- buněčná membrána imunologie MeSH
- buňky 3T3 MeSH
- epitopy analýza imunologie metabolismus MeSH
- imunoblotting MeSH
- mapování epitopu MeSH
- myši MeSH
- Paramecium imunologie MeSH
- Tetrahymena thermophila imunologie MeSH
- tubulin imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epitopy MeSH
- tubulin MeSH
gamma-Tubulin is necessary for nucleation and polar orientation of microtubules in vivo. The molecular mechanism of microtubule nucleation by gamma-tubulin and the regulation of this process are not fully understood. Here we show that there are two gamma-tubulin forms in the brain that are present in complexes of various sizes. Large complexes tend to dissociate in the presence of a high salt concentration. Both gamma-tubulins co-polymerized with tubulin dimers, and multiple gamma-tubulin bands were identified in microtubule protein preparations under conditions of non-denaturing electrophoresis. Immunoprecipitation experiments with monoclonal antibodies against gamma-tubulin and alpha-tubulin revealed interactions of both gamma-tubulin forms with tubulin dimers, irrespective of the size of complexes. We suggest that, besides small and large gamma-tubulin complexes, other molecular gamma-tubulin form(s) exist in brain extracts. Two-dimensional electrophoresis revealed multiple charge variants of gamma-tubulin in both brain extracts and microtubule protein preparations. Post-translational modification(s) of gamma-tubulins might therefore have an important role in the regulation of microtubule nucleation in neuronal cells.
- MeSH
- dimerizace MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- frakcionace buněk MeSH
- mozek - chemie * MeSH
- prasata MeSH
- protein - isoformy MeSH
- tkáňové extrakty chemie metabolismus MeSH
- tubulin chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protein - isoformy MeSH
- tkáňové extrakty MeSH
- tubulin MeSH
Distribution of post-translationally modified tubulins in cells of Nicotiana tabacum L. was analysed using a panel of specific antibodies. Polyglutamylated, tyrosinated, nontyrosinated, acetylated and delta 2-tubulin variants were detected on alpha-tubulin subunits; polyglutamylation was also found on beta-tubulin subunits. Modified tubulins were detected by immunofluorescence microscopy in interphase microtubules, preprophase bands, mitotic spindles as well as in phragmoplasts. They were, however, located differently in the various microtubule structures. The antibodies against tyrosinated, acetylated and polyglutamylated tubulins gave uniform staining along all microtubules, while antibodies against nontyrosinated and delta 2-tubulin provided dot-like staining of interphase microtubules. Additionally, immunoreactivity of antibodies against acetylated and delta 2-tubulins was strong in the pole regions of mitotic spindles. High-resolution isoelectric focusing revealed 22 tubulin charge variants in N. tabacum suspension cells. Immunoblotting with antibodies TU-01 and TU-06 against conserved antigenic determinants of alpha- and beta-tubulin molecules, respectively, revealed that 11 isoforms belonged to the alpha-subunit and 11 isoforms to the beta-subunit. Whereas antibodies against polyglutamylated, tyrosinated and acetylated tubulins reacted with several alpha-tubulin isoforms, antibodies against nontyrosinated and delta 2-tubulin reacted with only one. The combined data demonstrate that plant tubulin is extensively post-translationally modified and that these modifications participate in the generation of plant tubulin polymorphism.
- MeSH
- acetylace MeSH
- chromatografie iontoměničová MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- genetická variace MeSH
- imunoblotting MeSH
- isoelektrická fokusace MeSH
- jedovaté rostliny * MeSH
- kultivované buňky MeSH
- mikrotubuly metabolismus ultrastruktura MeSH
- monoklonální protilátky MeSH
- myši MeSH
- posttranslační úpravy proteinů * MeSH
- tabák metabolismus MeSH
- tubulin analýza izolace a purifikace metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- monoklonální protilátky MeSH
- tubulin MeSH