Nejvíce citovaný článek - PubMed ID 16238464
Evidence for hippocampal role in place avoidance other than merely memory storage
Genetic variations in protein expression are implicated in a broad spectrum of common diseases and complex traits but remain less explored compared to mRNA and classical phenotypes. This study systematically analyzed brain proteomes in a rat family using tandem mass tag (TMT)-based quantitative mass spectrometry. We quantified 8,119 proteins across two parental strains (SHR/Olalpcv and BN-Lx/Cub) and 29 HXB/BXH recombinant inbred (RI) strains, identifying 597 proteins with differential expression and 464 proteins linked to cis-acting quantitative trait loci (pQTLs). Proteogenomics identified 95 variant peptides, and sex-specific analyses revealed both shared and distinct cis-pQTLs. We improved the ability to pinpoint candidate genes underlying pQTLs by utilizing the rat pangenome and explored the connections between pQTLs in rats and human disorders. Collectively, this study highlights the value of large proteo-genetic datasets in elucidating protein modulation in the brain and its links to complex central nervous system (CNS) traits.
- Klíčová slova
- Biochemistry, Genetics, Neuroscience,
- Publikační typ
- časopisecké články MeSH
It is well known that communication between the medial prefrontal cortex (mPFC) and the ventral hippocampus (vHPC) is critical for various cognitive and behavioral functions. However, the exact role of these structures in spatial coordination remains to be clarified. Here we sought to determine the involvement of the mPFC and the vHPC in the spatial retrieval of a previously learned active place avoidance task in adult male Long-Evans rats, using a combination of unilateral and bilateral local muscimol inactivations. Moreover, we tested the role of the vHPC-mPFC pathway by performing combined ipsilateral and contralateral inactivations. Our results showed not only bilateral inactivations of either structure, but also the combined inactivations impaired the retrieval of spatial memory, whereas unilateral one-structure inactivations did not yield any effect. Remarkably, muscimol injections in combined groups exerted similar deficits, regardless of whether the inactivations were contralateral or ipsilateral. These findings confirm the importance of these structures in spatial cognition and emphasize the importance of the intact functioning of the vHPC-mPFC pathway.
- Klíčová slova
- active place avoidance, hippocampo-prefrontal pathway, muscimol, rotating arena, spatial memory,
- MeSH
- hipokampus * MeSH
- krysa rodu Rattus MeSH
- muscimol farmakologie MeSH
- potkani Long-Evans MeSH
- prefrontální mozková kůra MeSH
- prostorová paměť * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- muscimol MeSH
The role of NMDA receptors in learning, memory and hippocampal function has long been recognized. Post-mortem studies have indicated that the expression or subunit composition of the NMDA glutamate receptor subtype might be related to the impaired cognitive functions found in schizophrenia patients. NMDA receptor antagonists have been used to develop animal models of this disorder. There is accumulating evidence showing that not only the acute but also the chronic application of NMDA receptor antagonists may induce schizophrenia-like alterations in behavior and brain functions. However, limited evidence is available regarding the consequences of NMDA receptor blockage during periods of adolescence and early adulthood. This study tested the hypothesis that a 2-week treatment of male Long-Evans and Wistar rats with dizocilpine (MK-801; 0.5 mg/kg daily) starting at postnatal days (PD) 30 and 60 would cause a long-term cognitive deficit and changes in the levels of NMDA receptor subunits. The working memory version of the Morris water maze (MWM) and active place avoidance with reversal on a rotating arena (Carousel) requiring cognitive coordination and flexibility probed cognitive functions and an elevated-plus maze (EPM) was used to measure anxiety-like behavior. The western blot method was used to determine changes in NMDA receptor subunit levels in the hippocampus. Our results showed no significant changes in behaviors in Wistar rats. Slightly elevated anxiety-like behavior was observed in the EPM in Long-Evans rats with the onset of treatment on PD 30. Furthermore, Long-Evans rats treated from PD 60 displayed impaired working memory in the MWM. There were; however, no significant changes in the levels of NMDA receptor subunits because of MK-801 administration. These findings suggest that a 2-week treatment starting on PD 60 in Long-Evans rats leads to long-term changes in working memory, but this deficit is not paralleled by changes in NMDA receptor subunits. These results support the face validity, but not construct validity of this model. We suggest that chronic treatment of adolescent and adult rats does not constitute a plausible animal model of schizophrenia.
- Klíčová slova
- animal model, behavior, chronic treatment, dizocilpine, rats, schizophrenia, western blot,
- Publikační typ
- časopisecké články MeSH
Muscarinic acetylcholine receptors (mAChRs) have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.
- Klíčová slova
- acetylcholine, behavior, biperiden, learning, memory, receptor, rodents, scopolamine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidance must be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark.
- Klíčová slova
- Inertial idiothetic navigation, Interval timing, Rats, Spatial navigation, Substratal idiothetic navigation,
- Publikační typ
- časopisecké články MeSH
The hippocampus is well known for its critical involvement in spatial memory and information processing. In this study, we examined the effect of bilateral hippocampal inactivation with tetrodotoxin (TTX) in an "enemy avoidance" task. In this paradigm, a rat foraging on a circular platform (82 cm diameter) is trained to avoid a moving robot in 20-min sessions. Whenever the rat is located within 25 cm of the robot's center, it receives a mild electrical foot shock, which may be repeated until the subject makes an escape response to a safe distance. Seventeen young male Long-Evans rats were implanted with cannulae aimed at the dorsal hippocampus 14 d before the start of the training. After 6 d of training, each rat received a bilateral intrahippocampal infusion of TTX (5 ng in 1 μL) 40 min before the training session on day 7. The inactivation severely impaired avoidance of a moving robot (n = 8). No deficit was observed in a different group of rats (n = 9) that avoided a stable robot that was only displaced once in the middle of the session, showing that the impairment was not due to a deficit in distance estimation, object-reinforcement association, or shock sensitivity. This finding suggests a specific role of the hippocampus in dynamic cognitive processes required for flexible navigation strategies such as continuous updating of information about the position of a moving stimulus.
- MeSH
- chování zvířat fyziologie MeSH
- hipokampus anatomie a histologie účinky léků fyziologie MeSH
- krysa rodu Rattus MeSH
- lokomoce fyziologie MeSH
- potkani Long-Evans MeSH
- tetrodotoxin farmakologie MeSH
- učení vyhýbat se fyziologie MeSH
- vnímání pohybu fyziologie MeSH
- vnímání prostoru fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- tetrodotoxin MeSH
Inappropriate recollections and responses in stressful conditions are hallmarks of post-traumatic stress disorder and other anxiety and mood disorders, but how stress contributes to the disorders is unclear. Here we show that stress itself reactivates memories even if the memory is unrelated to the stressful experience. Forced-swim stress one day after learning enhanced memory recall. One-day post-learning amnestic treatments were ineffective unless administered soon after the swim, indicating that a stressful experience itself can reactivate unrelated consolidated memories. The swim also triggered inter-hemispheric transfer of a lateralized memory, confirming stress reactivates stable memories. These novel effects of stress on memory required the hippocampus although the memories themselves did not, indicating hippocampus-dependent modulation of extra-hippocampal memories. These findings that a stressful experience itself can activate memory suggest the novel hypothesis that traumatic stress reactivates pre-trauma memories, linking them to memory for the trauma and pathological facilitation of post-traumatic recall.
- MeSH
- amnézie MeSH
- hipokampus fyziologie MeSH
- kortikosteron analýza fyziologie MeSH
- krysa rodu Rattus MeSH
- modely u zvířat MeSH
- paměť MeSH
- plavání MeSH
- potkani Long-Evans MeSH
- psychický stres MeSH
- retence (psychologie) MeSH
- stresové poruchy vyvolané traumatem MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kortikosteron MeSH