Nejvíce citovaný článek - PubMed ID 16572122
Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2 for up to four days. Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.
Investigations of phytoplankton responses to iron stress in seawater are complicated by the fact that iron concentrations do not necessarily reflect bioavailability. Most studies to date have been based on single species or field samples and are problematic to interpret. Here, we report results from an experimental cocultivation model system that enabled us to evaluate interspecific competition as a function of iron content and form, and to study the effect of nutritional conditions on the proteomic profiles of individual species. Our study revealed that the dinoflagellate Amphidinium carterae was able to utilize iron from a hydroxamate siderophore, a strategy that could provide an ecological advantage in environments where siderophores present an important source of iron. Additionally, proteomic analysis allowed us to identify a potential candidate protein involved in iron acquisition from hydroxamate siderophores, a strategy that is largely unknown in eukaryotic phytoplankton.
- Klíčová slova
- (s)PLS-DA, (sparse) partial least squares discriminant analysis, AUC, area under curve, Amphidinium carterae, AtpE, ATP synthase, BCS, bathocuproinedisulfonic acid disodium salt, CREG1, cellular repressor of E1A stimulated genes 1, DFOB, desferrioxamine B, EDTA, ethylenediaminetetraacetic acid, ENT, enterobactin, FACS, fluorescence-activated cell sorting, FBAI, fructose-bisphosphate aldolase I, FBAII, fructose-bisphosphate aldolase II, FBP1, putative ferrichrome-binding protein, FOB, ferrioxamine B, Flow cytometry, ISIP, iron starvation induced protein, Iron, LHCX, light-harvesting complex subunits, LL, long-term iron limitation, LR, iron enrichment, Marine microalgae, NBD, nitrobenz-2-oxa-1,3-diazole, NPQ, nonphotochemical quenching, PAGE, polyacrylamide gel electrophoresis, PSI, photosystem I, PSII, photosystem II, PetA, cytochrome b6/f, Proteomics, PsaC, photosystem I iron-sulfur center, PsaD, photosystem I reaction center subunit II, PsaE, photosystem I reaction center subunit IV, PsaL, photosystem I reaction center subunit XI, PsbC, photosystem II CP43 reaction center protein, PsbV, cytochrome c-550, RR, long-term iron sufficiency, SOD1, superoxide dismutase [Cu-Zn], Siderophores,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The model pennate diatom Phaeodactylum tricornutum is able to assimilate a range of iron sources. It therefore provides a platform to study different mechanisms of iron processing concomitantly in the same cell. In this study, we follow the localization of three iron starvation induced proteins (ISIPs) in vivo, driven by their native promoters and tagged by fluorophores in an engineered line of P. tricornutum. We find that the localization patterns of ISIPs are dynamic and variable depending on the overall iron status of the cell and the source of iron it is exposed to. Notwithstanding, a shared destination of the three ISIPs both under ferric iron and siderophore-bound iron supplementation is a globular compartment in the vicinity of the chloroplast. In a proteomic analysis, we identify that the cell engages endocytosis machinery involved in the vesicular trafficking as a response to siderophore molecules, even when these are not bound to iron. Our results suggest that there may be a direct vesicle traffic connection between the diatom cell membrane and the periplastidial compartment (PPC) that co-opts clathrin-mediated endocytosis and the "cytoplasm to vacuole" (Cvt) pathway, for proteins involved in iron assimilation. Proteomics data are available via ProteomeXchange with identifier PXD021172. HIGHLIGHT: The marine diatom P. tricornutum engages a vesicular network to traffic siderophores and phytotransferrin from the cell membrane directly to a putative iron processing site in the vicinity of the chloroplast.
- Klíčová slova
- P. tricornutum, diatoms, fluorescent proteins, iron, iron starvation induced proteins, proteome, siderophores,
- Publikační typ
- časopisecké články MeSH
The productivity of the ocean is largely dependent on iron availability, and marine phytoplankton have evolved sophisticated mechanisms to cope with chronically low iron levels in vast regions of the open ocean. By analyzing the metabarcoding data generated from the Tara Oceans expedition, we determined how the global distribution of the model marine chlorarachniophyte Bigelowiella natans varies across regions with different iron concentrations. We performed a comprehensive proteomics analysis of the molecular mechanisms underpinning the adaptation of B. natans to iron scarcity and report on the temporal response of cells to iron enrichment. Our results highlight the role of phytotransferrin in iron homeostasis and indicate the involvement of CREG1 protein in the response to iron availability. Analysis of the Tara Oceans metagenomes and metatranscriptomes also points to a similar role for CREG1, which is found to be widely distributed among marine plankton but to show a strong bias in gene and transcript abundance toward iron-deficient regions. Our analyses allowed us to define a new subfamily of the CobW domain-containing COG0523 putative metal chaperones which are involved in iron metabolism and are restricted to only a few phytoplankton lineages in addition to B. natans At the physiological level, we elucidated the mechanisms allowing a fast recovery of PSII photochemistry after resupply of iron. Collectively, our study demonstrates that B. natans is well adapted to dynamically respond to a changing iron environment and suggests that CREG1 and COG0523 are important components of iron homeostasis in B. natans and other phytoplankton.IMPORTANCE Despite low iron availability in the ocean, marine phytoplankton require considerable amounts of iron for their growth and proliferation. While there is a constantly growing knowledge of iron uptake and its role in the cellular processes of the most abundant marine photosynthetic groups, there are still largely overlooked branches of the eukaryotic tree of life, such as the chlorarachniophytes. In the present work, we focused on the model chlorarachniophyte Bigelowiella natans, integrating physiological and proteomic analyses in culture conditions with the mining of omics data generated by the Tara Oceans expedition. We provide unique insight into the complex responses of B. natans to iron availability, including novel links to iron metabolism conserved in other phytoplankton lineages.
- Klíčová slova
- Bigelowiella natans, iron, metagenomics, metatranscriptomics, photosynthesis, phytoplankton, proteomics,
- Publikační typ
- časopisecké články MeSH
Iron is an essential micronutrient involved in many biological processes and is often limiting for primary production in large regions of the World Ocean. Metagenomic and physiological studies have identified clades or ecotypes of marine phytoplankton that are specialized in iron depleted ecological niches. Although less studied, eukaryotic picophytoplankton does contribute significantly to primary production and carbon transfer to higher trophic levels. In particular, metagenomic studies of the green picoalga Ostreococcus have revealed the occurrence of two main clades distributed along coast-offshore gradients, suggesting niche partitioning in different nutrient regimes. Here, we present a study of the response to iron limitation of four Ostreococcus strains isolated from contrasted environments. Whereas the strains isolated in nutrient-rich waters showed high iron requirements, the oceanic strains could cope with lower iron concentrations. The RCC802 strain, in particular, was able to maintain high growth rate at low iron levels. Together physiological and transcriptomic data indicate that the competitiveness of RCC802 under iron limitation is related to a lowering of iron needs though a reduction of the photosynthetic machinery and of protein content, rather than to cell size reduction. Our results overall suggest that iron is one of the factors driving the differentiation of physiologically specialized Ostreococcus strains in the ocean.
In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation.
- Klíčová slova
- Ostreococcus, circadian, ferritin, iron, phytoplankton,
- MeSH
- chemická precipitace MeSH
- cirkadiánní rytmus * účinky léků genetika účinky záření MeSH
- ferritiny genetika metabolismus MeSH
- fytoplankton účinky léků genetika růst a vývoj metabolismus MeSH
- hmotnostní spektrometrie MeSH
- homeostáza * účinky léků genetika účinky záření MeSH
- kinetika MeSH
- mikrobiální viabilita účinky léků účinky záření MeSH
- mořská voda mikrobiologie MeSH
- proteiny vázající železo metabolismus MeSH
- regulace genové exprese účinky léků účinky záření MeSH
- světlo MeSH
- transkriptom genetika MeSH
- western blotting MeSH
- železo metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferritiny MeSH
- proteiny vázající železo MeSH
- železo MeSH