Nejvíce citovaný článek - PubMed ID 17693571
Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains
Metabolic syndrome is a growing concern in developed societies and due to its polygenic nature, the genetic component is only slowly being elucidated. Common mitochondrial DNA sequence variants have been associated with symptoms of metabolic syndrome and may, therefore, be relevant players in the genetics of metabolic syndrome. We investigate the effect of mitochondrial sequence variation on the metabolic phenotype in conplastic rat strains with identical nuclear but unique mitochondrial genomes, challenged by high-fat diet. We find that the variation in mitochondrial rRNA sequence represents risk factor in the insulin resistance development, which is associated with diacylglycerols accumulation, induced by tissue-specific reduction of the oxidative capacity. These metabolic perturbations stem from the 12S rRNA sequence variation affecting mitochondrial ribosome assembly and translation. Our work demonstrates that physiological variation in mitochondrial rRNA might represent a relevant underlying factor in the progression of metabolic syndrome.
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- genetická predispozice k nemoci MeSH
- haplotypy * MeSH
- inzulinová rezistence genetika MeSH
- krysa rodu Rattus MeSH
- metabolický syndrom * genetika metabolismus MeSH
- mitochondriální DNA genetika metabolismus MeSH
- mitochondrie metabolismus genetika MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA ribozomální * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
- RNA mitochondriální MeSH
- RNA ribozomální * MeSH
- RNA, ribosomal, 12S MeSH Prohlížeč
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus. Recently, natural mitochondrial genome (mtDNA) polymorphisms (haplogroups) received increasing attention in the pathophysiology of human common diseases. However, retrograde effects of mtDNA variants on such traits are difficult to study in humans. The conplastic strains represent key animal models to elucidate regulatory roles of mtDNA haplogroups on defined nuclear genome background. To analyze the relationship between mtDNA variants and cardiometabolic traits, we derived a set of rat conplastic strains (SHR-mtBN, SHR-mtF344 and SHR-mtLEW), harboring all major mtDNA haplotypes present in common inbred strains on the nuclear background of the spontaneously hypertensive rat (SHR). The BN, F344 and LEW mtDNA differ from the SHR in multiple amino acid substitutions in protein coding genes and also in variants of tRNA and rRNA genes. Different mtDNA haplotypes were found to predispose to various sets of cardiometabolic phenotypes which provided evidence for significant retrograde effects of mtDNA in the SHR. In the future, these animals could be used to decipher individual biochemical components involved in the retrograde signaling.
- MeSH
- fenotyp MeSH
- kardiovaskulární nemoci * metabolismus MeSH
- krysa rodu Rattus MeSH
- mitochondriální DNA * genetika MeSH
- mitochondrie metabolismus MeSH
- potkani inbrední F344 MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální DNA * MeSH
Adaptation to continuous normobaric hypoxia (CNH) protects the heart against acute ischemia/reperfusion injury. Recently, we have demonstrated the infarct size-limiting effect of CNH also in hearts of spontaneously hypertensive rats (SHR) and in conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of more ischemia-resistant Brown Norway rats. Importantly, cardioprotective effect of CNH was more pronounced in SHR-mtBN than in SHR. Thus, here we aimed to identify candidate genes which may contribute to this difference between the strains. Rats were adapted to CNH (FiO2 0.1) for 3 weeks or kept at room air as normoxic controls. Screening of 45 transcripts was performed in left ventricles using Biomark Chip. Significant differences between the groups were analyzed by univariate analysis (ANOVA) and the genes contributing to the differences between the strains unmasked by CNH were identified by multivariate analyses (PCA, SOM). ANOVA with Bonferroni correction revealed that transcripts differently affected by CNH in SHR and SHR-mtBN belong predominantly to lipid metabolism and antioxidant defense. PCA divided four experimental groups into two main clusters corresponding to chronically hypoxic and normoxic groups, and differences between the strains were more pronounced after CNH. Subsequently, the following 14 candidate transcripts were selected by PCA, and confirmed by SOM analyses, that can contribute to the strain differences in cardioprotective phenotype afforded by CNH: Alkaline ceramidase 2 (Acer2), Fatty acid translocase (Cd36), Aconitase 1 (Aco1), Peroxisome proliferator activated receptor gamma (Pparg), Hemoxygenase 2 (Hmox2), Phospholipase A2 group IIA (Ppla2g2a), Dynamin-related protein (Drp), Protein kinase C epsilon (Pkce), Hexokinase 2 (Hk2), Sphingomyelin synthase 2 (Sgms2), Caspase 3 (Casp3), Mitofussin 1 (Mfn1), Phospholipase A2 group V (Pla2g5), and Catalase (Cat). Our data suggest that the stronger cardioprotective phenotype of conplastic SHR-mtBN strain afforded by CNH is associated with either preventing the drop or increasing the expression of transcripts related to energy metabolism, antioxidant response and mitochondrial dynamics.
- Klíčová slova
- SHR, SHR-mtBN, conplastic strain, hypoxia, left ventricle, metabolism,
- Publikační typ
- časopisecké články MeSH
Common inbred strains of the laboratory rat can be divided into four different mitochondrial DNA haplotype groups represented by the SHR, BN, LEW, and F344 strains. In the current study, we investigated the metabolic and hemodynamic effects of the SHR vs. LEW mitochondrial genomes by comparing the SHR to a new SHR conplastic strain, SHR-mt(LEW); these strains are genetically identical except for their mitochondrial genomes. Complete mitochondrial DNA (mtDNA) sequence analysis comparing the SHR and LEW strains revealed gene variants encoding amino acid substitutions limited to a single mitochondrial enzyme complex, NADH dehydrogenase (complex I), affecting subunits 2, 4, and 5. Two of the variants in the mt-Nd4 subunit gene are located close to variants known to be associated with exercise intolerance and diabetes mellitus in humans. No variants were found in tRNA or rRNA genes. These variants in mt-Nd2, mt-Nd4, and mt-Nd5 in the SHR-mt(LEW) conplastic strain were linked to reductions in oxidative and nonoxidative glucose metabolism in skeletal muscle. In addition, SHR-mt(LEW) conplastic rats showed increased serum nonesterified fatty acid levels and resistance to insulin stimulated incorporation of glucose into adipose tissue lipids. These results provide evidence that inherited variation in mitochondrial genes encoding respiratory chain complex I subunits, in the absence of variation in the nuclear genome and other confounding factors, can influence glucose and lipid metabolism when expressed on the nuclear genetic background of the SHR strain.
- MeSH
- adeninnukleotidy metabolismus MeSH
- dědičnost MeSH
- dietní sacharidy aplikace a dávkování metabolismus MeSH
- fenotyp MeSH
- fruktosa aplikace a dávkování metabolismus MeSH
- genetická variace * MeSH
- haplotypy MeSH
- hypertenze krev enzymologie genetika patofyziologie MeSH
- inzulin krev MeSH
- inzulinová rezistence genetika MeSH
- kosterní svaly enzymologie MeSH
- krevní glukóza metabolismus MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- kyseliny mastné neesterifikované krev MeSH
- mitochondriální DNA genetika MeSH
- modely nemocí na zvířatech MeSH
- molekulární sekvence - údaje MeSH
- NADH-dehydrogenasa genetika metabolismus MeSH
- oxidativní fosforylace * MeSH
- potkani inbrední BN MeSH
- potkani inbrední F344 MeSH
- potkani inbrední LEW MeSH
- potkani inbrední SHR MeSH
- sekvence aminokyselin MeSH
- srdeční frekvence MeSH
- tuková tkáň enzymologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adeninnukleotidy MeSH
- dietní sacharidy MeSH
- fruktosa MeSH
- inzulin MeSH
- krevní glukóza MeSH
- kyseliny mastné neesterifikované MeSH
- mitochondriální DNA MeSH
- NADH dehydrogenase subunit 2, rat MeSH Prohlížeč
- NADH dehydrogenase subunit 4 MeSH Prohlížeč
- NADH dehydrogenase subunit 5, rat MeSH Prohlížeč
- NADH-dehydrogenasa MeSH
The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and associated metabolic disturbances. Multiple quantitative trait loci associated with hemodynamic and metabolic parameters have been mapped in the SHR. Recently, it has become possible to identify some of the specific quantitative trait gene (QTG) variants that underlie quantitative trait loci linked to complex cardiovascular and metabolic traits in SHR related strains. Recombinant inbred strains derived from SHR and Brown Norway progenitors, together with SHR congenic and transgenic strains, have proven useful for establishing the identity of several QTGs in SHR models. It is anticipated that the combined use of linkage analyses and gene expression profiles, together with the recently available genome sequences of both the SHR and Brown Norway strains and new methods for manipulating the rat genome, will soon accelerate progress in identifying QTGs for complex traits in SHR-related strains.
- MeSH
- exprese genu MeSH
- inbrední kmeny potkanů genetika MeSH
- krysa rodu Rattus MeSH
- kvantitativní znak dědičný MeSH
- lokus kvantitativního znaku genetika MeSH
- mapování chromozomů MeSH
- mitochondriální DNA genetika MeSH
- potkani inbrední SHR genetika MeSH
- potkani transgenní MeSH
- technika přenosu genů MeSH
- transposasy MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- mitochondriální DNA MeSH
- transposasy MeSH