Nejvíce citovaný článek - PubMed ID 18295767
Structure and function of the native and recombinant mitochondrial MRP1/MRP2 complex from Trypanosoma brucei
The RNA editing core complex (RECC) catalyzes mitochondrial U-insertion/deletion mRNA editing in trypanosomatid flagellates. Some naphthalene-based sulfonated compounds, such as C35 and MrB, competitively inhibit the auto-adenylylation activity of an essential RECC enzyme, kinetoplastid RNA editing ligase 1 (KREL1), required for the final step in editing. Previous studies revealed the ability of these compounds to interfere with the interaction between the editosome and its RNA substrates, consequently affecting all catalytic activities that comprise RNA editing. This observation implicates a critical function for the affected RNA binding proteins in RNA editing. In this study, using the inhibitory compounds, we analyzed the composition and editing activities of functional editosomes and identified the mitochondrial RNA binding proteins 1 and 2 (MRP1/2) as their preferred targets. While the MRP1/2 heterotetramer complex is known to bind guide RNA and promote annealing to its cognate pre-edited mRNA, its role in RNA editing remained enigmatic. We show that the compounds affect the association between the RECC and MRP1/2 heterotetramer. Furthermore, RECC purified post-treatment with these compounds exhibit compromised in vitro RNA editing activity that, remarkably, recovers upon the addition of recombinant MRP1/2 proteins. This work provides experimental evidence that the MRP1/2 heterotetramer is required for in vitro RNA editing activity and substantiates the hypothesized role of these proteins in presenting the RNA duplex to the catalytic complex in the initial steps of RNA editing.
- Klíčová slova
- MRP1/2, RNA editing, RNA editing initiation, RNA-binding protein, inhibitor, trypanosome,
- MeSH
- editace RNA účinky léků genetika MeSH
- guide RNA, Kinetoplastida účinky léků MeSH
- ligasy antagonisté a inhibitory MeSH
- messenger RNA genetika MeSH
- mitochondriální proteiny genetika MeSH
- mitochondrie účinky léků genetika MeSH
- proteiny vázající RNA genetika MeSH
- protozoální proteiny genetika MeSH
- rekombinantní proteiny genetika MeSH
- RNA mitochondriální genetika MeSH
- RNA protozoální genetika MeSH
- Trypanosoma brucei brucei účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gBP21 protein, Trypanosoma brucei MeSH Prohlížeč
- gBP25 protein, Trypanosoma brucei MeSH Prohlížeč
- guide RNA, Kinetoplastida MeSH
- ligasy MeSH
- messenger RNA MeSH
- mitochondriální proteiny MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- rekombinantní proteiny MeSH
- RNA mitochondriální MeSH
- RNA protozoální MeSH
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
- Klíčová slova
- RNA decay, RNA editing, Trypanosoma, kinetoplast, mitochondria, polyadenylation,
- MeSH
- editace RNA fyziologie MeSH
- RNA mitochondriální genetika metabolismus MeSH
- RNA protozoální genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- RNA mitochondriální MeSH
- RNA protozoální MeSH
MRP1/2 is a heteromeric protein complex that functions in the trypanosomatid mitochondrion as part of the RNA editing machinery, which facilitates multiple targeted insertions and deletions of uridines. MRP1/2 was shown to interact with MRB8170, which initiates RNA editing by marking pre-edited mRNAs, while TbRGG2 is required for its efficient progression on pan-edited mRNAs. Both MRP1/2 and TbRGG2 are capable of modulating RNA-RNA interactions in vitro. As determined by using iCLIP and RIP-qPCR, RNAs bound to MRP1/2 are characterized and compared with those associated with MRB8170 and TbRGG2. We provide evidence that MRP1 and MRB8170 have correlated binding and similar RNA crosslinking peak profiles over minimally and never-edited mRNAs. Our results suggest that MRP1 assists MRB8170 in RNA editing on minimally edited mRNAs.
- Klíčová slova
- RNA binding proteins, RNA editing, iCLIP, mitochondrion, ribonuclear protein, trypanosome,
- MeSH
- editace RNA MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- proteiny vázající RNA metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA mitochondriální genetika metabolismus MeSH
- Trypanosoma genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gBP21 protein, Trypanosoma brucei MeSH Prohlížeč
- messenger RNA MeSH
- mitochondrial messenger RNA MeSH Prohlížeč
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- RNA mitochondriální MeSH
UNLABELLED: Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. IMPORTANCE: Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.
- MeSH
- Amoebozoa parazitologie MeSH
- delece genu * MeSH
- editace RNA * MeSH
- Kinetoplastida genetika růst a vývoj MeSH
- mitochondriální DNA chemie genetika MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei. Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo. In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi. The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.
- MeSH
- mitochondriální proteiny genetika MeSH
- mutace MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- RNA mitochondriální MeSH
- RNA genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- Trypanosoma brucei brucei genetika MeSH
- viabilita buněk genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gBP21 protein, Trypanosoma brucei MeSH Prohlížeč
- mitochondriální proteiny MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- RNA mitochondriální MeSH
- RNA MeSH
A majority of Trypanosoma brucei proteins have unknown functions, a consequence of its independent evolutionary history within the order Kinetoplastida that allowed for the emergence of several unique biological properties. Among these is RNA editing, needed for expression of mitochondrial-encoded genes. The recently discovered mitochondrial RNA binding complex 1 (MRB1) is composed of proteins with several functions in processing organellar RNA. We characterize two MRB1 subunits, referred to herein as MRB8170 and MRB4160, which are paralogs arisen from a large chromosome duplication occurring only in T. brucei. As with many other MRB1 proteins, both have no recognizable domains, motifs, or orthologs outside the order. We show that they are both novel RNA binding proteins, possibly representing a new class of these proteins. They associate with a similar subset of MRB1 subunits but not directly with each other. We generated cell lines that either individually or simultaneously target the mRNAs encoding both proteins using RNAi. Their dual silencing results in a differential effect on moderately and pan-edited RNAs, suggesting a possible functional separation of the two proteins. Cell growth persists upon RNAi silencing of each protein individually in contrast to the dual knockdown. Yet, their apparent redundancy in terms of cell viability is at odds with the finding that only one of these knockdowns results in the general degradation of pan-edited RNAs. While MRB8170 and MRB4160 share a considerable degree of conservation, our results suggest that their recent sequence divergence has led to them influencing mitochondrial mRNAs to differing degrees.
- MeSH
- biologické modely MeSH
- klonování DNA MeSH
- konzervovaná sekvence MeSH
- makromolekulární látky metabolismus MeSH
- messenger RNA metabolismus MeSH
- podjednotky proteinů genetika metabolismus MeSH
- proteiny vázající RNA chemie genetika metabolismus fyziologie MeSH
- protozoální proteiny chemie genetika metabolismus fyziologie MeSH
- RNA mitochondriální MeSH
- RNA metabolismus MeSH
- sekvenční homologie MeSH
- substrátová specifita MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- makromolekulární látky MeSH
- messenger RNA MeSH
- podjednotky proteinů MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- RNA mitochondriální MeSH
- RNA MeSH
Nfs-like proteins have cysteine desulfurase (CysD) activity, which removes sulfur (S) from cysteine, and provides S for iron-sulfur cluster assembly and the thiolation of tRNAs. These proteins also have selenocysteine lyase activity in vitro, and cleave selenocysteine into alanine and elemental selenium (Se). It was shown previously that the Nfs-like protein called Nfs from the parasitic protist Trypanosoma brucei is a genuine CysD. A second Nfs-like protein is encoded in the nuclear genome of T. brucei. We called this protein selenocysteine lyase (SCL) because phylogenetic analysis reveals that it is monophyletic with known eukaryotic selenocysteine lyases. The Nfs protein is located in the mitochondrion, whereas the SCL protein seems to be present in the nucleus and cytoplasm. Unexpectedly, downregulation of either Nfs or SCL protein leads to a dramatic decrease in both CysD and selenocysteine lyase activities concurrently in the mitochondrion and the cytosolic fractions. Because loss of Nfs causes a growth phenotype but loss of SCL does not, we propose that Nfs can fully complement SCL, whereas SCL can only partially replace Nfs under our growth conditions.
- MeSH
- cytosol enzymologie MeSH
- fylogeneze MeSH
- kompartmentace buňky MeSH
- lyasy štěpící vazby C-S genetika metabolismus MeSH
- lyasy antagonisté a inhibitory genetika metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondrie enzymologie MeSH
- protozoální geny MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- RNA protozoální genetika metabolismus MeSH
- Trypanosoma brucei brucei enzymologie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cysteine desulfurase MeSH Prohlížeč
- lyasy štěpící vazby C-S MeSH
- lyasy MeSH
- messenger RNA MeSH
- protozoální proteiny MeSH
- RNA protozoální MeSH
- selenocysteine lyase MeSH Prohlížeč
The mitochondrial RNA binding complex 1 (MRB1) is a recently discovered complex of proteins associated with the TbRGG1 and TbRGG2 proteins in Trypanosoma brucei. Based on the phenotype caused by down-regulation of these two proteins, it was proposed to play an unspecified role in RNA editing. RNAi silencing of three newly characterized protein subunits, guide RNA associated proteins (GAPs) 1 and 2 as well as a predicted DExD/H-box RNA helicase, show they are essential for cell growth in the procyclic stage. Furthermore, their down-regulation leads to inhibition of editing in only those mRNAs for which minicircle-encoded guide (g) RNAs are required. However, editing remains unaffected when the maxicircle-encoded cis-acting gRNA is employed. Interestingly, all three proteins are necessary for the expression of the minicircle-encoded gRNAs. Moreover, down-regulation of a fourth assayed putative MRB1 subunit, Nudix hydrolase, does not appear to destabilize gRNAs, and down-regulation of this protein has a general impact on the stability of maxicircle-encoded RNAs. GAP1 and 2 are also essential for the survival of the bloodstream stage, in which the gRNAs become eliminated upon depletion of either protein. Immunolocalization revealed that GAP1 and 2 are concentrated into discrete spots along the mitochondrion, usually localized in the proximity of the kinetoplast. Finally, we demonstrate that the same mtRNA polymerase known to transcribe the maxicircle mRNAs may also have a role in expression of the minicircle-encoded gRNAs.
- MeSH
- DEAD-box RNA-helikasy metabolismus MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- guide RNA, Kinetoplastida genetika MeSH
- mitochondriální proteiny metabolismus MeSH
- NUDIX hydrolasy MeSH
- proteiny vázající RNA metabolismus MeSH
- protozoální proteiny metabolismus MeSH
- pyrofosfatasy metabolismus MeSH
- RNA mitochondriální MeSH
- RNA protozoální genetika MeSH
- RNA genetika MeSH
- Trypanosoma brucei brucei genetika růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DEAD-box RNA-helikasy MeSH
- DNA řízené RNA-polymerasy MeSH
- guide RNA, Kinetoplastida MeSH
- mitochondriální proteiny MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- pyrofosfatasy MeSH
- RNA mitochondriální MeSH
- RNA protozoální MeSH
- RNA MeSH
The uridine insertion/deletion RNA editing of kinetoplastid mitochondrial transcripts is performed by complex machinery involving a number of proteins and multiple protein complexes. Here we describe the effect of silencing of TbRGG1 gene by RNA interference on RNA editing in procyclic stage of Trypanosoma brucei. TbRGG1 is an essential protein for cell growth, the absence of which results in an overall decline of edited mRNAs, while the levels of never-edited RNAs remain unaltered. Repression of TbRGG1 expression has no effect on the 20S editosome and MRP1/2 complex. TAP-tag purification of TbRGG1 coisolated a novel multiprotein complex, and its association was further verified by TAP-tag analyses of two other components of the complex. TbRGG1 interaction with this complex appears to be mediated by RNA. Our results suggest that the TbRGG1 protein functions in stabilizing edited RNAs or editing efficiency and that the associated novel complex may have a role in mitochondrial RNA metabolism. We provisionally name it putative mitochondrial RNA-binding complex 1 (put-MRB complex 1).
- MeSH
- DNA primery genetika MeSH
- editace RNA MeSH
- multiproteinové komplexy genetika metabolismus MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- RNA mitochondriální MeSH
- RNA protozoální genetika metabolismus MeSH
- RNA genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- stabilita RNA MeSH
- Trypanosoma brucei brucei genetika růst a vývoj metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA primery MeSH
- multiproteinové komplexy MeSH
- proteiny vázající RNA MeSH
- protozoální proteiny MeSH
- RNA mitochondriální MeSH
- RNA protozoální MeSH
- RNA MeSH
- TBRGG1 protein, Trypanosoma brucei MeSH Prohlížeč