Most cited article - PubMed ID 19138735
Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity--role of individual hydroxyl groups
Silymarin is an extract obtained from the seeds of milk thistle (Sylibum marianum L., Asteraceae) and contains several structurally related flavonolignans and a small family of flavonoids. Mouse spleen cells represent highly sensitive primary cells suitable for studying the pharmacological potential and biofunctional properties of natural substances. Cultivation of splenocytes for 24 h under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen) resulted in decreased viability of splenocytes compared to intact cells. A cytoprotective effect of silybin (SB), silychristin (SCH) and 2,3-dehydrosilybin (DHSB) was observed at concentrations as low as 5 µmol/ml. At 50 µmol/ml, these substances restored and/or stimulated viability and mitochondrial membrane potential and had anti-apoptotic effect in the order SB > DHSB > SCH. The substances demonstrated a concentration-dependent activity in restoring the redox balance based on the changes in the concentration of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide. This was in the order DHSB > SCH > SB, which correlated with the suppressed expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase and glutathione peroxidase. The strong stimulation of the superoxide dismutase 1 gene converting ROS to H2O2 points to its dominant role in the maintaining redox homeostasis in splenocytes, which was disrupted by oxidative stress due to non-physiological culture conditions. Our study showed significant differences in the cytoprotective, antioxidant and anti-apoptotic activities of SB, SCH, and DHSB on splenocytes exposed to mild and AAPH-induced oxidative stress.
- Keywords
- 2,3-dehydrosilybin, Apoptosis, Mouse splenocytes, Redox balance, Silybin, Silychristin, Viability,
- MeSH
- Antioxidants * pharmacology MeSH
- Apoptosis * drug effects MeSH
- Cytoprotection * drug effects MeSH
- NF-E2-Related Factor 2 metabolism MeSH
- Membrane Potential, Mitochondrial drug effects MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Nitric Oxide metabolism MeSH
- Oxidative Stress drug effects MeSH
- Hydrogen Peroxide metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Silybin MeSH
- Silymarin * pharmacology analogs & derivatives MeSH
- Spleen * cytology drug effects metabolism MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants * MeSH
- dehydrosilybin MeSH Browser
- NF-E2-Related Factor 2 MeSH
- Nitric Oxide MeSH
- Hydrogen Peroxide MeSH
- Reactive Oxygen Species MeSH
- Silybin MeSH
- silychristin MeSH Browser
- Silymarin * MeSH
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
- Keywords
- Silybum marianum, chirality, dehydroflavonolignan, diastereomer, flavonoid, flavonolignan, isosilybin, milk thistle, silibinin, silybin, silychristin, silydianin, silymarin,
- MeSH
- Anti-Infective Agents chemistry pharmacology MeSH
- Antioxidants chemistry pharmacology MeSH
- Antineoplastic Agents, Phytogenic chemistry pharmacology MeSH
- Humans MeSH
- Silybin chemistry pharmacology MeSH
- Stereoisomerism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Infective Agents MeSH
- Antioxidants MeSH
- Antineoplastic Agents, Phytogenic MeSH
- Silybin MeSH
Silybin is considered to be the main biologically active component of silymarin. Its oxidized derivative 2,3-dehydrosilybin typically occurs in silymarin in small, but non-negligible amounts (up to 3%). Here, we investigated in detail complex biological activities of silybin and 2,3-dehydrosilybin optical isomers. Antioxidant activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, as well as their racemic mixtures, were investigated by using oxygen radical absorption capacity (ORAC) and cellular antioxidant activity (CAA) assay. All substances efficiently reduced nitric oxide production and cytokines (TNF-α, IL-6) release in a dose-dependent manner. Multidrug resistance (MDR) modulating potential was evaluated as inhibition of P-glycoprotein (P-gp) ATPase activity and regulation of ATP-binding cassette (ABC) protein expression. All the tested compounds showed strong dose-dependent inhibition of P-gp pump. Moreover, 2,3-dehydrosilybin A (30 µM) displayed the strongest sensitization of doxorubicin-resistant ovarian carcinoma. Despite these significant effects, silybin B was the only compound acting directly upon P-gp in vitro and also downregulating the expression of respective MDR genes. This compound altered the expression of P-glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). 2,3-Dehydrosilybin AB exhibited the most effective inhibition of acetylcholinesterase activity. We can clearly postulate that silybin derivatives could serve well as modulators of a cancer drug-resistant phenotype.
- Keywords
- P-glycoprotein, acetylcholinesterase inhibition, cytokines, dehydrosilybin, doxorubicin resistance, expression profile, immunomodulation, silybin,
- Publication type
- Journal Article MeSH
Antioxidants protect the structural and functional components in organisms against oxidative stress. Most antioxidants are of plant origin as the plants are permanently exposed to oxidative stress (UV radiation, photosynthetic reactions). Both carotenoids and flavonoids are prominent antioxidant and anti-radical agents often occurring together in the plant tissues and acting in lipophilic and hydrophilic milieu, respectively. They are complementary in their anti-radical activity. This study describes the synthesis of a series of hybrid ester conjugates of retinoic acid with various flavonolignans, such as silybin, 2,3-dehydrosilybin and isosilybin. Antioxidant/anti-radical activities and bio-physical properties of novel covalent carotenoid-flavonoid hybrids, as well as various mixtures of the respective parent components, were investigated. Retinoyl conjugates with silybin-which is the most important flavonolignan in silymarin complex-(and its pure diastereomers) displayed better 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than both the parent compounds and their equimolar mixtures.
- Keywords
- anti-radical, antioxidant, carotenoids, conjugate, esterification, flavonolignans, retinoic acid, retinol, silymarin, vitamin A,
- Publication type
- Journal Article MeSH
Quercetin is a prototypical antioxidant and prominent member of flavonoids, a large group of natural polyphenols. The oxidation of quercetin may lead to its dimerization, which is a paradigm of the more general polyphenol oligomerization. There exist two opposing mechanisms to describe the dimerization process, namely radical-coupling or Diels-Alder reactions. This work presents a comprehensive rationalization of this dimerization process, acquired from density functional theory (DFT) calculations. It is found that the two-step radical-coupling pathway is thermodynamically and kinetically preferred over the Diels-Alder reaction. This is in agreement with the experimental results showing the formation of only one isomer, whereas the Diels-Alder mechanism would yield two isomers. The evolution in bonding, occurring during these two processes, is investigated using the atoms in molecules (AIM) and electron localization function (ELF) topological approaches. It is shown that some electron density is accumulated between the fragments in the transition state of the radical-coupling reaction, but not in the transition state of the Diels-Alder process. Graphical Abstract Quantum chemistry calculations of the dimerization process of quercetin show that a radical coupling approach is preferred to a Diels-Alder type reaction, in agreement with experimental results. Analysis of the bonding evolution highlights the reaction mechanism.
- Keywords
- Antioxidants, Atoms in molecules (AIM), Density functional theory, Electron localization function (ELF), Flavonoids, Kinetics, Thermochemistry,
- Publication type
- Journal Article MeSH
Divalent or multivalent molecules often show enhanced biological activity relative to the simple monomeric units. Here we present enzymatically and chemically prepared dimers of the flavonolignans silybin and 2,3-dehydrosilybin. Their electrochemical behavior was studied by in situ and ex situ square wave voltammetry. The oxidation of monomers and dimers was similar, but adsorption onto the electrode and cell surfaces was different. A 1,1-diphenyl-2-picrylhydrazyl (DPPH) and an inhibition of microsomal lipoperoxidation assay were performed with same trend of results for silybin and 2,3-dehydrosilybin dimers. Silybin dimer showed better activity than the monomer, while on the contrary 2,3-dehydrosilybin dimer presented weaker antioxidant/antilipoperoxidant activity than its monomer. Cytotoxicity was evaluated on human umbilical vein endothelial cells, normal human adult keratinocytes, mouse fibroblasts (BALB/c 3T3) and human liver hepatocellular carcinoma cell line (HepG2). Silybin dimer was more cytotoxic than the parent compound and in the case of 2,3-dehydrosilybin its dimer showed weaker cytotoxicity than the monomer.
- MeSH
- Biphenyl Compounds antagonists & inhibitors MeSH
- Biocatalysis MeSH
- Hep G2 Cells MeSH
- Dimerization MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Fibroblasts cytology drug effects MeSH
- Fungal Proteins chemistry MeSH
- Microsomes, Liver drug effects MeSH
- Keratinocytes cytology drug effects MeSH
- Rats MeSH
- Humans MeSH
- Lipase chemistry MeSH
- Mice MeSH
- Oxidation-Reduction MeSH
- Lipid Peroxidation drug effects MeSH
- Picrates antagonists & inhibitors MeSH
- Free Radical Scavengers chemical synthesis pharmacology MeSH
- Silybin MeSH
- Silymarin chemical synthesis pharmacology MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1,1-diphenyl-2-picrylhydrazyl MeSH Browser
- Biphenyl Compounds MeSH
- dehydrosilybin MeSH Browser
- Fungal Proteins MeSH
- Lipase MeSH
- Picrates MeSH
- Free Radical Scavengers MeSH
- Silybin MeSH
- Silymarin MeSH
Reactive oxygen species (ROS) originating from mitochondria are perceived as a factor contributing to cell aging and means have been sought to attenuate ROS formation with the aim of extending the cell lifespan. Silybin and dehydrosilybin, two polyphenolic compounds, display a plethora of biological effects generally ascribed to their known antioxidant capacity. When investigating the cytoprotective effects of these two compounds in the primary cell cultures of neonatal rat cardiomyocytes, we noted the ability of dehydrosilybin to de-energize the cells by monitoring JC-1 fluorescence. Experiments evaluating oxygen consumption and membrane potential revealed that dehydrosilybin uncouples the respiration of isolated rat heart mitochondria albeit with a much lower potency than synthetic uncouplers. Furthermore, dehydrosilybin revealed a very high potency in suppressing ROS formation in isolated rat heart mitochondria with IC(50) = 0.15 μM. It is far more effective than its effect in a purely chemical system generating superoxide or in cells capable of oxidative burst, where the IC(50) for dehydrosilybin exceeds 50 μM. Dehydrosilybin also attenuated ROS formation caused by rotenone in the primary cultures of neonatal rat cardiomyocytes. We infer that the apparent uncoupler-like activity of dehydrosilybin is the basis of its ROS modulation effect in neonatal rat cardiomyocytes and leads us to propose a hypothesis on natural ischemia preconditioning by dietary polyphenols.
- MeSH
- Analysis of Variance MeSH
- Benzimidazoles MeSH
- Fluorescent Dyes MeSH
- Inhibitory Concentration 50 MeSH
- Carbocyanines MeSH
- Myocytes, Cardiac metabolism MeSH
- Rats MeSH
- Mitochondria metabolism MeSH
- Molecular Structure MeSH
- Rats, Wistar MeSH
- Reactive Oxygen Species metabolism MeSH
- Rotenone toxicity MeSH
- Silymarin chemistry pharmacology MeSH
- Oxygen Consumption drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine MeSH Browser
- Benzimidazoles MeSH
- dehydrosilybin MeSH Browser
- Fluorescent Dyes MeSH
- Carbocyanines MeSH
- Reactive Oxygen Species MeSH
- Rotenone MeSH
- Silymarin MeSH