Most cited article - PubMed ID 19772642
Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise
BACKGROUND: The centromere is one of the key regions of the eukaryotic chromosome. While maintaining its function, centromeric DNA may differ among closely related species. Here, we explored the composition and structure of the pericentromeres (a chromosomal region including a functional centromere) of Hieracium alpinum (Asteraceae), a member of one of the most diverse genera in the plant kingdom. Previously, we identified a pericentromere-specific tandem repeat that made it possible to distinguish reads within the Oxford Nanopore library attributed to the pericentromeres, separating them into a discrete subset and allowing comparison of the repeatome composition of this subset with the remaining genome. RESULTS: We found that the main satellite DNA (satDNA) monomer forms long arrays of linear and block types in the pericentromeric heterochromatin of H. alpinum, and very often, single reads contain forward and reverse arrays and mirror each other. Beside the major, two new minor satDNA families were discovered. In addition to satDNAs, high amounts of LTR retrotransposons (TEs) with dominant of Tekay lineage, were detected in the pericentromeres. We were able to reconstruct four main TEs of the Ty3-gypsy and Ty1-copia superfamilies and compare their relative positions with satDNAs. The latter showed that the conserved domains (CDs) of the TE proteins are located between the newly discovered satDNAs, which appear to be parts of ancient Tekay LTRs that we were able to reconstruct. The dominant satDNA monomer shows a certain similarity to the GAG CD of the Angela retrotransposon. CONCLUSIONS: The species-specific pericentromeric arrays of the H. alpinum genome are heterogeneous, exhibiting both linear and block type structures. High amounts of forward and reverse arrays of the main satDNA monomer point to multiple microinversions that could be the main mechanism for rapid structural evolution stochastically creating the uniqueness of an individual pericentromeric structure. The traces of TEs insertion waves remain in pericentromeres for a long time, thus "keeping memories" of past genomic events. We counted at least four waves of TEs insertions. In pericentromeres, TEs particles can be transformed into satDNA, which constitutes a background pool of minor families that, under certain conditions, can replace the dominant one(s).
- Keywords
- Asteraceae, Hieracium, Oxford Nanopore Technology sequencing, Pericentromeres, Plants, Satellite DNA, Transposable elements,
- Publication type
- Journal Article MeSH
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
- MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Fungi genetics MeSH
- Evolution, Molecular MeSH
- Mutation MeSH
- Polymorphism, Genetic * MeSH
- DNA, Ribosomal genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA, Ribosomal MeSH
Aquatic plant species are often widespread, even across continents. They pose a challenge to species delimitation and taxonomy due to their reduced morphology and high phenotypic plasticity. These difficulties are even more pronounced in the case of interspecific hybridization. We investigate the aquatic plant genus Stuckenia for the first time on a worldwide scale. Expert species determination is aided by sequencing of nuclear ribosomal ITS and 5S-NTS regions and the plastid intergenic spacers rpl20-5'rps12 and trnT-trnL. Nuclear markers are used to infer hybridization, and the maternal origin of hybrids is addressed with plastid markers. Pure species are subjected to phylogenetic analyses. Two main Stuckenia lineages are found: one consists of S. amblyphylla, S. filiformis, S. pamirica, and S. vaginata, the other includes S. pectinata and S. striata. The widespread species S. pectinata, S. filiformis, and S. vaginata show intraspecific genetic variation, which is structured geographically. Many intraspecific hybrids, which are usually fertile, occur between those genotypes. Interspecific hybrids, which are consistently sterile, are detected among all widespread species; some are reported for the first time in several countries and regions. They originated multiple times from reciprocal crosses and reflect the geographical origins of parental genotypes. Intraspecific genetic variation can be higher than interspecific differences between closely related species. Comparison of phenotypic variation in the field and in cultivation with genotypic variation shows that numerous conspicuous forms have been overestimated taxonomically. These are resolved as phenotypes responding to unusual environments, have recurrently evolved adaptations, or represent extreme forms of continuous variation of the recognized species. However, some specific regional lineages, which have evolved from variable species, may be interpreted as early steps of the speciation process. Hybridization has been underestimated in some regions as a source of Stuckenia diversity, and the respective hybrid plants have been misidentified as intraspecific taxa or even as separate species. Many erroneous entries in sequence databases are detected and summarized. This work provides a sound basis for species delimitation and hybrid recognition in this difficult genus.
- Keywords
- Groenlandia, Potamogetonaceae, Stuckenia, geographic distribution, hybridization, intraspecific variation, multigene phylogeny, species delimitation,
- Publication type
- Journal Article MeSH
Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.
- Keywords
- Chionoracium, Hieracium, Stenotheca, molecular dating, molecular markers, phylogenetic analysis,
- Publication type
- Journal Article MeSH
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Molecular evolution of ribosomal DNA can be highly dynamic. Hundreds to thousands of copies in the genome are subject to concerted evolution, which homogenizes sequence variants to different degrees. If well homogenized, sequences are suitable for phylogeny reconstruction; if not, sequence polymorphism has to be handled appropriately. Here we investigate non-coding rDNA sequences (ITS/ETS, 5S-NTS) along with the chromosomal organization of their respective loci (45S and 5S rDNA) in diploids of the Hieraciinae. The subtribe consists of genera Hieracium, Pilosella, Andryala, and Hispidella and has a complex evolutionary history characterized by ancient intergeneric hybridization, allele sharing among species, and incomplete lineage sorting. Direct or cloned Sanger sequences and phased alleles derived from Illumina genome sequencing were subjected to phylogenetic analyses. Patterns of homogenization and tree topologies based on the three regions were compared. In contrast to most other plant groups, 5S-NTS sequences were generally better homogenized than ITS and ETS sequences. A novel case of ancient intergeneric hybridization between Hispidella and Hieracium was inferred, and some further incongruences between the trees were found, suggesting independent evolution of these regions. In some species, homogenization of ITS/ETS and 5S-NTS sequences proceeded in different directions although the 5S rDNA locus always occurred on the same chromosome with one 45S rDNA locus. The ancestral rDNA organization in the Hieraciinae comprised 4 loci of 45S rDNA in terminal positions and 2 loci of 5S rDNA in interstitial positions per diploid genome. In Hieracium, some deviations from this general pattern were found (3, 6, or 7 loci of 45S rDNA; three loci of 5S rDNA). Some of these deviations concerned intraspecific variation, and most of them occurred at the tips of the tree or independently in different lineages. This indicates that the organization of rDNA loci is more dynamic than the evolution of sequences contained in them and that locus number is therefore largely unsuitable to inform about species relationships in Hieracium. No consistent differences in the degree of sequence homogenization and the number of 45S rDNA loci were found, suggesting interlocus concerted evolution.
- Keywords
- 45S rDNA, 5S rDNA, Andryala, Hieracium, Pilosella, concerted evolution, in situ hybridization, molecular phylogeny,
- Publication type
- Journal Article MeSH
The repetitive content of the plant genome (repeatome) often represents its largest fraction and is frequently correlated with its size. Transposable elements (TEs), the main component of the repeatome, are an important driver in the genome diversification due to their fast-evolving nature. Hybridization and polyploidization events are hypothesized to induce massive bursts of TEs resulting, among other effects, in an increase of copy number and genome size. Little is known about the repeatome dynamics following hybridization and polyploidization in plants that reproduce by apomixis (asexual reproduction via seeds). To address this, we analyzed the repeatomes of two diploid parental species, Hieracium intybaceum and H. prenanthoides (sexual), their diploid F1 synthetic and their natural triploid hybrids (H. pallidiflorum and H. picroides, apomictic). Using low-coverage next-generation sequencing (NGS) and a graph-based clustering approach, we detected high overall similarity across all major repeatome categories between the parental species, despite their large phylogenetic distance. Medium and highly abundant repetitive elements comprise ∼70% of Hieracium genomes; most prevalent were Ty3/Gypsy chromovirus Tekay and Ty1/Copia Maximus-SIRE elements. No TE bursts were detected, neither in synthetic nor in natural hybrids, as TE abundance generally followed theoretical expectations based on parental genome dosage. Slight over- and under-representation of TE cluster abundances reflected individual differences in genome size. However, in comparative analyses, apomicts displayed an overabundance of pararetrovirus clusters not observed in synthetic hybrids. Substantial deviations were detected in rDNAs and satellite repeats, but these patterns were sample specific. rDNA and satellite repeats (three of them were newly developed as cytogenetic markers) were localized on chromosomes by fluorescence in situ hybridization (FISH). In a few cases, low-abundant repeats (5S rDNA and certain satellites) showed some discrepancy between NGS data and FISH results, which is due partly to the bias of low-coverage sequencing and partly to low amounts of the satellite repeats or their sequence divergence. Overall, satellite DNA (including rDNA) was markedly affected by hybridization, but independent of the ploidy or reproductive mode of the progeny, whereas bursts of TEs did not play an important role in the evolutionary history of Hieracium.
- Keywords
- RepeatExplorer, apomixis, hawkweed, hybridization, next-generation sequencing, polyploidization, repeatome,
- Publication type
- Journal Article MeSH
BACKGROUND AND AIMS: Apomixis or asexual seed reproduction is a key evolutionary mechanism in certain angiosperms providing them with reproductive assurance and isolation. Nevertheless, the frequency of apomixis is largely unknown, especially in groups with autonomous apomixis such as the diploid-polyploid genus Hieracium. METHODS: Using flow cytometric analyses, we determined the ploidy level and reproductive pathways (sexual vs. apomictic) for 7616 seeds originating from 946 plants belonging to >50 taxa sampled at 130 sites across Europe. KEY RESULTS: Diploid seeds produced by diploids were formed exclusively by the sexual pathway after double fertilization of reduced embryo sacs. An absolute majority of tri- and tetraploid seeds (99.6 %) produced by tri- and tetrapolyploid taxa were formed by autonomous apomixis. Only 20 polyploid seeds (0.4 %) were formed sexually. These seeds, which originated on seven polyploid accessions of four taxa, were formed after fertilization of either unreduced embryo sacs through a so-called triploid bridge or reduced embryo sacs, and frequently resulted in progeny with an increased ploidy. In addition, the formation of seedlings with increased ploidy (4x and 6x) was found in two triploid plants. This is the first firm evidence on functional facultative apomixis in polyploid members of Hieracium sensu stricto (s.s.). CONCLUSIONS: The mode of reproduction in Hieracium s.s. is tightly associated with ploidy. While diploids produce seeds exclusively sexually, polyploids produce seeds by obligate or almost obligate apomixis. Strict apomixis can increase the reproductive assurance and this in turn can increase the colonization ability of apomicts. Nevertheless, our data clearly show that certain polyploid plants are still able to reproduce sexually and contribute to the formation of new cytotypes and genotypes. The finding of functional facultative apomicts is essential for future studies focused on evolution, inheritance and ecological significance of apomixis in this genus.
Thorough understanding of biodiversity is a fundamental prerequisite for biological research. A lack of taxonomic knowledge and species misidentifications are particularly critical for conservation. Here we present an example of Potamogeton floridanus, the Florida Pondweed, an endangered taxon endemic to a small area in the Florida panhandle, whose taxonomic status remained controversial for more than a century, and all previous attempts to elucidate its identity have failed. We applied molecular approaches to tackle the origin of the mysterious taxon and supplemented them with morphological and anatomical investigations of both historical herbarium collections and plants recently collected in the type area for a comprehensive taxonomic reassessment. Sequencing of two nuclear ribosomal markers and one chloroplast non-coding spacer resulted in the surprising discovery that P. floridanus is a hybrid of P. pulcher and P. oakesianus, with the former being the maternal parent. The hybrid colony is currently geographically isolated from the distribution range of P. oakesianus. We show that previous molecular analyses have failed to reveal its hybrid identity due to inadequate nuclear DNA sequence editing. This is an example how the uncritical use of automized sequence reads can hamper molecular species identifications and also affect phylogenetic tree construction and interpretation. This unique hybrid taxon, P. ×floridanus, adds another case study to the debate on hybrid protection; consequences for its conservation are discussed.
- MeSH
- Biodiversity MeSH
- Phylogeny MeSH
- Endangered Species MeSH
- Potamogetonaceae anatomy & histology genetics MeSH
- RNA, Ribosomal, 5S genetics MeSH
- Sequence Analysis MeSH
- Sequence Homology, Amino Acid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- United States MeSH
- Names of Substances
- RNA, Ribosomal, 5S MeSH
In all eukaryotes, the highly repeated 35S ribosomal DNA (rDNA) sequences encoding 18S-5.8S-26S ribosomal RNA (rRNA) typically show high levels of intragenomic uniformity due to homogenisation processes, leading to concerted evolution of 35S rDNA repeats. Here, we compared 35S rDNA divergence in several seed plants using next generation sequencing and a range of molecular and cytogenetic approaches. Most species showed similar 35S rDNA homogeneity indicating concerted evolution. However, Cycas revoluta exhibits an extraordinary diversity of rDNA repeats (nucleotide sequence divergence of different copies averaging 12 %), influencing both the coding and non-coding rDNA regions nearly equally. In contrast, its rRNA transcriptome was highly homogeneous suggesting that only a minority of genes (<20 %) encode functional rRNA. The most common SNPs were C > T substitutions located in symmetrical CG and CHG contexts which were also highly methylated. Both functional genes and pseudogenes appear to cluster on chromosomes. The extraordinary high levels of 35S rDNA diversity in C. revoluta, and probably other species of cycads, indicate that the frequency of repeat homogenisation has been much lower in this lineage, compared with all other land plant lineages studied. This has led to the accumulation of methylation-driven mutations and pseudogenisation. Potentially, the reduced homology between paralogs prevented their elimination by homologous recombination, resulting in long-term retention of rDNA pseudogenes in the genome.
- Keywords
- Concerted evolution, Cycadales, Cytosine methylation, Living fossil, rDNA,
- MeSH
- Cycas genetics MeSH
- DNA, Plant genetics MeSH
- Transcription, Genetic genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- DNA, Ribosomal Spacer genetics MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Ribosomal, 18S genetics MeSH
- RNA, Ribosomal, 5.8S genetics MeSH
- RNA, Ribosomal genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- DNA, Ribosomal Spacer MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 18S MeSH
- RNA, Ribosomal, 5.8S MeSH
- RNA, Ribosomal MeSH
- RNA, ribosomal, 26S MeSH Browser