Most cited article - PubMed ID 19927008
Inappropriately high circulating and intrarenal angiotensin II levels during dietary salt loading exacerbate hypertension in Cyp1a1-Ren-2 transgenic rats
The aim of the study was to clarify the role of the interplay between hypertension and the renin-angiotensin system (RAS) in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. We hypothesized that in the late phase of hypertension with already developed signs of end-organ damage, inappropriate RAS activation could impair cardiac tolerance to I/R injury. Experiments were performed in male Cyp1a1-Ren-2 transgenic rats with inducible hypertension. The early phase of ANG II-dependent hypertension was induced by 5 days and the late phase by the 13 days dietary indole-3-carbinol (I3C) administration. Noninduced rats served as controls. Echocardiography and pressure-volume analysis were performed, angiotensins' levels were measured and cardiac tolerance to ischemia/reperfusion injury was studied. The infarct size was significantly reduced (by 50%) in 13 days I3C-induced hypertensive rats with marked cardiac hypertrophy, this reduction was abolished by losartan treatment. In the late phase of hypertension there are indications of a failing heart, mainly in reduced preload recruitable stroke work (PRSW), but only nonsignificant trends in worsening of some other parameters, showing that the myocardium is in a compensated phase. The influence of the RAS depends on the balance between the vasoconstrictive and the opposed vasodilatory axis. In the initial stage of hypertension, the vasodilatory axis of the RAS prevails, and with the development of hypertension the vasoconstrictive axis of the RAS becomes stronger. We observed a clear effect of AT1 receptor blockade on maximum pressure in left ventricle, cardiac hypertrophy and ANG II levels. In conclusion, we confirmed improved cardiac tolerance to I/R injury in hypertensive hypertrophied rats and showed that, in the late phase of hypertension, the myocardium is in a compensated phase.
- Keywords
- ANG II-dependent hypertension, AT1 receptor antagonist, P-V analysis, ischemia/reperfusion injury, renin-angiotensin system,
- Publication type
- Journal Article MeSH
We investigated the role of the interaction between hypertension and the renin-angiotensin system in the pathophysiology of myocardial ischemia/reperfusion injury. We hypothesized that in the early phase of angiotensin II (ANG II)-dependent hypertension with developed left ventricular hypertrophy, cardioprotective mechanism(s) are fully activated. The experiments were performed in transgenic rats with inducible hypertension, noninduced rats served as controls. The early phase of ANG II-dependent hypertension was induced by five-days (5 days) dietary indole-3-carbinol administration. Cardiac hypertrophy, ANG II and ANG 1-7 levels, protein expression of their receptors and enzymes were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury, and infarct size and ventricular arrhythmias were assessed. Induced rats developed marked cardiac hypertrophy accompanied by elevated ANG levels. Ischemia/reperfusion mortality was significantly higher in induced than noninduced rats (52.1 and 25%, respectively). The blockade of AT1 receptors with losartan significantly increased survival rate in both groups. Myocardial infarct size was significantly reduced after 5 days induction (by 11%), without changes after losartan treatment. In conclusion, we confirmed improved cardiac tolerance to ischemia/reperfusion injury in hypertensive cardiohypertrophied rats and found that activation of AT1 receptors by locally produced ANG II in the heart was not the mechanism underlying infarct size reduction.
- Keywords
- angiotensin II receptor antagonist, hypertension, infarct size, ischemia/reperfusion injury, renin-angiotensin system,
- Publication type
- Journal Article MeSH
We hypothesized that vascular actions of 20-hydroxyeicosatetraenoic acid (20-HETE), the product of cytochrome P450 (CYP450)-dependent ω-hydroxylase, potentiate prohypertensive actions of angiotensin II (ANG II) in Cyp1a1-Ren-2 transgenic rats, a model of ANG II-dependent malignant hypertension. Therefore, we evaluated the antihypertensive effectiveness of 20-HETE receptor antagonist (AAA) in this model. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. Treatment with AAA was started either simultaneously with induction of hypertension or 10 days later, during established hypertension. Systolic blood pressure (SBP) was monitored by radiotelemetry, indices of renal and cardiac injury, and kidney ANG II levels were determined. In I3C-induced hypertensive rats, early AAA treatment reduced SBP elevation (to 161 ± 3 compared with 199 ± 3 mmHg in untreated I3C-induced rats), reduced albuminuria, glomerulosclerosis index, and cardiac hypertrophy (P<0.05 in all cases). Untreated I3C-induced rats showed augmented kidney ANG II (405 ± 14 compared with 52 ± 3 fmol/g in non-induced rats, P<0.05) which was markedly lowered by AAA treatment (72 ± 6 fmol/g). Remarkably, in TGR with established hypertension, AAA also decreased SBP (from 187 ± 4 to 158 ± 4 mmHg, P<0.05) and exhibited organoprotective effects in addition to marked suppression of kidney ANG II levels. In conclusion, 20-HETE antagonist attenuated the development and largely reversed the established ANG II-dependent malignant hypertension, likely via suppression of intrarenal ANG II levels. This suggests that intrarenal ANG II activation by 20-HETE is important in the pathophysiology of this hypertension form.
- Keywords
- 20-hydroxyeicosatetraenoic acid, cytochrome p450 metabolites, malignant hypertension, renin-angiotensin system,
- MeSH
- Amides pharmacology MeSH
- Angiotensin II metabolism MeSH
- Antihypertensive Agents pharmacology MeSH
- Angiotensin II Type 1 Receptor Blockers pharmacology MeSH
- Cytochrome P-450 CYP1A1 genetics MeSH
- Hypertension, Malignant chemically induced drug therapy metabolism MeSH
- Indoles toxicity MeSH
- Hydroxyeicosatetraenoic Acids antagonists & inhibitors metabolism MeSH
- Kidney drug effects metabolism MeSH
- Rats, Transgenic MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- 20-hydroxy-5,8,11,14-eicosatetraenoic acid MeSH Browser
- Amides MeSH
- Angiotensin II MeSH
- Antihypertensive Agents MeSH
- Angiotensin II Type 1 Receptor Blockers MeSH
- Cytochrome P-450 CYP1A1 MeSH
- indole-3-carbinol MeSH Browser
- Indoles MeSH
- Hydroxyeicosatetraenoic Acids MeSH
OBJECTIVE: We evaluated the therapeutic effectiveness of a new, orally active epoxyeicosatrienoic acid analog (EET-A) in rats with angiotensin II (ANG II)-dependent malignant hypertension. METHODS: Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. EET-A treatment was started either simultaneously with I3C induction process (early treatment) or 10 days later during established hypertension (late treatment). Blood pressure (BP) (radiotelemetry), indices of renal and cardiac injury, and plasma and kidney levels of the components of the renin-angiotensin system (RAS) were determined. RESULTS: In I3C-induced hypertensive rats, early EET-A treatment attenuated BP increase (to 175 ± 3 versus 193 ± 4 mmHg, P < 0.05, on day 13), reduced albuminuria (15 ± 1 versus 28 ± 2 mg/24 h, P < 0.05), and cardiac hypertrophy as compared with untreated I3C-induced rats. This was associated with suppression of plasma and kidney ANG II levels (48 ± 6 versus 106 ± 9 and 122 ± 19 versus 346 ± 11 fmol ml or g, respectively, P < 0.05) and increases in plasma and kidney angiotensin (1-7) concentrations (84 ± 9 versus 37 ± 6 and 199 ± 12 versus 68 ± 9 fmol/ml or g, respectively, P < 0.05). Remarkably, late EET-A treatment did not lower BP or improve renal and cardiac injury; indices of RAS activity were not affected. CONCLUSION: The new, orally active EET-A attenuated the development of experimental ANG II-dependent malignant hypertension, likely via suppression of the hypertensiogenic axis and augmentation of the vasodilatory/natriuretic axis of RAS.
- MeSH
- Albuminuria drug therapy MeSH
- Angiotensin I metabolism MeSH
- Angiotensin II metabolism MeSH
- Time Factors MeSH
- Cytochrome P-450 CYP1A1 genetics MeSH
- Hypertension, Malignant chemically induced physiopathology prevention & control MeSH
- Indoles MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- 8,11,14-Eicosatrienoic Acid analogs & derivatives therapeutic use MeSH
- Kidney metabolism MeSH
- Peptide Fragments metabolism MeSH
- Rats, Transgenic MeSH
- Renin-Angiotensin System drug effects MeSH
- Renin genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- angiotensin I (1-7) MeSH Browser
- Angiotensin I MeSH
- Angiotensin II MeSH
- Cytochrome P-450 CYP1A1 MeSH
- indole-3-carbinol MeSH Browser
- Indoles MeSH
- 8,11,14-Eicosatrienoic Acid MeSH
- Peptide Fragments MeSH
- Ren2 protein, rat MeSH Browser
- Renin MeSH
The detailed mechanisms determining the course of congestive heart failure (CHF) and associated renal dysfunction remain unclear. In a volume overload model of CHF induced by creation of aorto-caval fistula (ACF) in Hannover Sprague-Dawley (HanSD) rats we explored the putative pathogenetic contribution of epoxyeicosatrienoic acids (EETs), active products of CYP-450 dependent epoxygenase pathway of arachidonic acid metabolism, and compared it with the role of the renin-angiotensin system (RAS). Chronic treatment with cis-4-[4-(3-adamantan-1-yl-ureido) cyclohexyloxy]benzoic acid (c-AUCB, 3 mg/l in drinking water), an inhibitor of soluble epoxide hydrolase (sEH) which normally degrades EETs, increased intrarenal and myocardial EETs to levels observed in sham-operated HanSD rats, but did not improve the survival or renal function impairment. In contrast, chronic angiotensin-converting enzyme inhibition (ACEi, trandolapril, 6 mg/l in drinking water) increased renal blood flow, fractional sodium excretion and markedly improved survival, without affecting left ventricular structure and performance. Hence, renal dysfunction rather than cardiac remodeling determines long-term mortality in advanced stage of CHF due to volume overload. Strong protective actions of ACEi were associated with suppression of the vasoconstrictor/sodium retaining axis and activation of vasodilatory/natriuretic axis of the renin-angiotensin system in the circulating blood and kidney tissue.
- MeSH
- Angiotensin I blood MeSH
- Angiotensin II blood MeSH
- Benzoates pharmacology therapeutic use MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Epoxy Compounds metabolism MeSH
- Angiotensin-Converting Enzyme Inhibitors MeSH
- Rats MeSH
- 8,11,14-Eicosatrienoic Acid analogs & derivatives blood metabolism MeSH
- Kidney metabolism MeSH
- Urea analogs & derivatives pharmacology therapeutic use MeSH
- Disease Models, Animal MeSH
- Myocardium metabolism MeSH
- Random Allocation MeSH
- Peptide Fragments blood MeSH
- Drug Evaluation, Preclinical MeSH
- Renal Insufficiency blood etiology prevention & control MeSH
- Renin-Angiotensin System drug effects MeSH
- Heart Failure blood complications diagnostic imaging drug therapy MeSH
- Ultrasonography MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- 4-(4-(3-adamantan-1-ylureido)cyclohexyloxy)benzoic acid MeSH Browser
- angiotensin I (1-7) MeSH Browser
- Angiotensin I MeSH
- Angiotensin II MeSH
- Benzoates MeSH
- Epoxide Hydrolases MeSH
- Epoxy Compounds MeSH
- Angiotensin-Converting Enzyme Inhibitors MeSH
- 8,11,14-Eicosatrienoic Acid MeSH
- Urea MeSH
- Peptide Fragments MeSH
Recent studies have shown that the long-term antihypertensive action of soluble epoxide hydrolase inhibition (sEH) in angiotensin-II (AngII)-dependent hypertension might be mediated by the suppression of intrarenal AngII levels. To test this hypothesis, we examined the effects of acute (2 days) and chronic (14 days) sEH inhibition on blood pressure (BP) in transgenic rats with inducible AngII-dependent hypertension. AngII-dependent malignant hypertension was induced by 10 days' dietary administration of indole-3-carbinol (I3C), a natural xenobiotic that activates the mouse renin gene in Cyp1a1-Ren-2 transgenic rats. BP was monitored by radiotelemetry. Acute and chronic sEH inhibition was achieved using cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid, given at doses of 0.3, 3, 13, 26, 60 and 130 mg/L in drinking water. At the end of experiments, renal concentrations of epoxyeicosatrienoic acids, their inactive metabolites dihydroxyeicosatrienoic acids and AngII were measured. Acute BP-lowering effects of sEH inhibition in I3C-induced rats was associated with a marked increase in renal epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids ratio and acute natriuresis. Chronic treatment with cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced rats elicited dose-dependent persistent BP lowering associated with a significant reduction of plasma and kidney AngII levels. Our findings show that the acute BP-lowering effect of sEH inhibition in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated by a substantial increase in intrarenal epoxyeicosatrienoic acids and their natriuretic action without altering intrarenal renin-angiotensin system activity. Long-term antihypertensive action of cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated mostly by suppression of intrarenal AngII concentration.
- Keywords
- angiotensin-II, cytochrome P-450 epoxygenase, eicosanoids, epoxyeicosatrienoic acids, hypertension, soluble epoxide hydrolase,
- MeSH
- Angiotensin II metabolism MeSH
- Antihypertensive Agents pharmacology MeSH
- Cytochrome P-450 CYP1A1 metabolism MeSH
- Epoxide Hydrolases antagonists & inhibitors metabolism MeSH
- Hypertension drug therapy metabolism MeSH
- Indoles metabolism MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Kidney drug effects metabolism MeSH
- Mice MeSH
- Natriuresis drug effects MeSH
- Rats, Inbred F344 MeSH
- Rats, Transgenic MeSH
- Renin-Angiotensin System drug effects MeSH
- Renin metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Angiotensin II MeSH
- Antihypertensive Agents MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Epoxide Hydrolases MeSH
- indole-3-carbinol MeSH Browser
- Indoles MeSH
- Ren2 protein, rat MeSH Browser
- Renin MeSH
1. The aim of the present study was to test the hypothesis that increasing kidney tissue concentrations of epoxyeicosatrienoic acids (EETs) by preventing their degradation to the biologically inactive dihydroxyeicosatrienoic acids (DHETEs) using blockade of soluble epoxide hydrolase (sEH) would attenuate the progression of chronic kidney disease (CKD). 2. Ren-2 transgenic rats (TGR) after 5/6 renal mass reduction (5/6 NX) served as a model of CKD associated with angiotensin (Ang) II-dependent hypertension. Soluble epoxide hydrolase was inhibited using cis-4-[4-(3-adamantan-1-yl-ureido)cyclohexyloxy]benzoic acid (c-AUCB; 3 mg/L drinking water) for 20 weeks after 5/6 NX. Sham-operated normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats served as controls. 3. When applied in TGR subjected to 5/6 NX, c-AUCB treatment improved survival rate, prevented the increase in blood pressure, retarded the progression of cardiac hypertrophy, reduced proteinuria and the degree of glomerular and tubulointerstitial injury and reduced glomerular volume. All these organ-protective actions were associated with normalization of the intrarenal EETs:DHETEs ratio, an index of the availability of biologically active EETs, to levels observed in sham-operated HanSD rats. There were no significant concurrent changes of increased intrarenal AngII content. 4. Together, these results show that 5/6 NX TGR exhibit a profound deficiency of intrarenal availability of active epoxygenase metabolites (EETs), which probably contributes to the progression of CKD in this model of AngII-dependent hypertension, and that restoration of intrarenal availability of EETs using long-term c-AUCB treatment exhibits substantial renoprotective actions.
- Keywords
- 5/6 nephrectomy, chronic kidney disease, cytochrome P450 enzymes, end-organ damage, epoxyeicosatrienoic acids, hypertension, renin-angiotensin system, soluble epoxide hydrolase,
- MeSH
- Angiotensin II pharmacology MeSH
- Renal Insufficiency, Chronic drug therapy metabolism MeSH
- Epoxide Hydrolases antagonists & inhibitors metabolism MeSH
- Hypertension drug therapy metabolism MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Survival Rate MeSH
- Nephrectomy methods MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Transgenic metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Angiotensin II MeSH
- Epoxide Hydrolases MeSH
OBJECTIVE: The present study was performed to investigate in a model of malignant hypertension if the antihypertensive actions of soluble epoxide hydrolase (sEH) inhibition are nitric oxide (NO)-dependent. METHODS: ANG II-dependent malignant hypertension was induced through dietary administration for 3 days of the natural xenobiotic indole-3-carbinol (I3C) in Cyp1a1-Ren-2 transgenic rats. Blood pressure (BP) was monitored by radiotelemetry and treatment with the sEH inhibitor [cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyl-oxy]-benzoic acid (c-AUCB)] was started 48 h before administration of the diet containing I3C. In separate groups of rats, combined administration of the sEH inhibitor and the nonspecific NO synthase inhibitor [Nω-nitro-L-arginine methyl ester (L-NAME)] on the course of BP in I3C-induced and noninduced rats were evaluated. In addition, combined blockade of renin-angiotensin system (RAS) was superimposed on L-NAME administration in separate groups of rats. After 3 days of experimental protocols, the rats were prepared for renal functional studies and renal concentrations of epoxyeicosatrienoic acids (EETs) and their inactive metabolites dihydroxyeicosatrienoic acids (DHETEs) were measured. RESULTS: Treatment with c-AUCB increased the renal EETs/DHETEs ratio, attenuated the increases in BP, and prevented the decreases in renal function and the development of renal damage in I3C-induced Cyp1a1-Ren-2 rats. The BP lowering and renoprotective actions of the treatment with the sEH inhibitor c-AUCB were completely abolished by concomitant administration of L-NAME and not fully rescued by double RAS blockade without altering the increased EETs/DHETEs ratio. CONCLUSION: Our current findings indicate that the antihypertensive actions of sEH inhibition in this ANG II-dependent malignant form of hypertension are dependent on the interactions of endogenous bioavailability of EETs and NO.
- MeSH
- Angiotensin II physiology MeSH
- Antihypertensive Agents pharmacology therapeutic use MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Hypertension drug therapy physiopathology MeSH
- Enzyme Inhibitors pharmacology MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Thiobarbituric Acid Reactive Substances metabolism MeSH
- Kidney drug effects physiopathology MeSH
- NG-Nitroarginine Methyl Ester administration & dosage pharmacology therapeutic use MeSH
- Rats, Transgenic MeSH
- Nitric Oxide Synthase antagonists & inhibitors MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Angiotensin II MeSH
- Antihypertensive Agents MeSH
- Epoxide Hydrolases MeSH
- Enzyme Inhibitors MeSH
- Thiobarbituric Acid Reactive Substances MeSH
- NG-Nitroarginine Methyl Ester MeSH
- Nitric Oxide Synthase MeSH
OBJECTIVE: In the present study, we compared the effects of treatment with the novel soluble epoxide hydrolase (sEH) inhibitor (c-AUCB) with those of the AT1 receptor antagonist losartan on blood pressure (BP), autoregulation of renal blood flow (RBF) and on glomerular filtration rate (GFR) and the pressure-natriuresis relationship in response to stepwise reduction in renal arterial pressure (RAP) in Cyp1a1-Ren-2 transgenic rats. METHODS: Hypertension was induced in Cyp1a1-Ren-2 rats through dietary administration for 11 days of the natural xenobiotic indole-3-carbinol (I3C) which activates the renin gene. Treatment with c-AUCB and losartan was started 48 h before initiating administration of the diet containing I3C. Rats were prepared for renal functional studies to evaluate in-vivo renal autoregulatory efficiency when RAP was gradually decreased by an aortic clamp. RESULTS: I3C administration resulted in the development of severe hypertension which was associated with markedly lower basal RBF and GFR and substantially impaired autoregulatory efficiency as well as a suppression of the pressure-natriuresis relationship when compared with noninduced rats. Treatment with c-AUCB significantly decreased BP, improved autoregulatory efficiency of RBF and GFR and the slope of pressure-natriuresis relationship. Treatment with losartan completely prevented the impaired autoregulation and pressure-natriuresis relationship as well as the development of hypertension in I3C-induced rats. CONCLUSION: Our present findings indicate that chronic treatment with the sEH inhibitor c-AUCB substantially attenuates the development of malignant hypertension in I3C-induced rats likely via improvement of the renal autoregulatory efficiency and the pressure-natriuresis relationship.
- MeSH
- Angiotensin II Type 1 Receptor Blockers pharmacology MeSH
- Cytochrome P-450 CYP1A1 genetics MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Glomerular Filtration Rate drug effects physiology MeSH
- Hypertension, Malignant chemically induced physiopathology prevention & control MeSH
- Indoles adverse effects MeSH
- Enzyme Inhibitors pharmacology MeSH
- Blood Pressure drug effects physiology MeSH
- Rats MeSH
- Kidney blood supply pathology physiopathology MeSH
- Losartan pharmacology MeSH
- Disease Models, Animal MeSH
- Natriuresis drug effects physiology MeSH
- Kidney Diseases physiopathology prevention & control MeSH
- Rats, Transgenic MeSH
- Regional Blood Flow drug effects physiology MeSH
- Renin genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Angiotensin II Type 1 Receptor Blockers MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Epoxide Hydrolases MeSH
- indole-3-carbinol MeSH Browser
- Indoles MeSH
- Enzyme Inhibitors MeSH
- Losartan MeSH
- Ren2 protein, rat MeSH Browser
- Renin MeSH
In the present study, we examined the effects of soluble epoxide hydrolase (sEH) inhibition on the development of angiotensin II-dependent hypertension and on renal function in transgenic rats with inducible expression of the mouse renin gene (strain name Cyp1a1-Ren-2). Hypertension was induced in these rats by indole-3-carbinol (I3C; 0.3% in the diet) for 12 days. The sEH inhibitor cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB) was given in two doses (13 or 26 mg l-1) in drinking water. Blood pressure (BP), body weight (BW) and renal excretory parameters were monitored in conscious animals during the experiment. Renal haemodynamics was assessed at the end of treatment in anaesthetized rats. I3C administration resulted in severe hypertension with a rise in systolic BP from 118 ± 2 to 202 ± 3 mmHg, a loss of BW from 266 ± 5 to 228 ± 4 g and a rise in proteinuria from 14 ± 2 to 34 ± 3 mg day-1. Both doses of c-AUCB significantly attenuated the development of hypertension (systolic BP of 181 ± 4 and 176 ± 4 mmHg, respectively), the loss in BW (256 ± 4 and 259 ± 3 g, respectively) and the degree of proteinuria (27 ± 2 and 25 ± 3 mg day-1, respectively) to a similar extent. Moreover, c-AUCB prevented the reduction in renal plasma flow (5.4 ± 0.4 vs. 4.6 ± 0.3 ml min-1 g-1) and significantly increased sodium excretion (0.84 ± 0.16 vs. 0.38 ± 0.08 μmol min-1 g-1) during I3C administration. These data suggest that the oral administration of c-AUCB displays antihypertensive effects in Ren-2 transgenic rats with inducible malignant hypertension via an improvement of renal function.
- MeSH
- Angiotensin II MeSH
- Antihypertensive Agents administration & dosage pharmacology MeSH
- Administration, Oral MeSH
- Benzoates administration & dosage pharmacology MeSH
- Time Factors MeSH
- Cytochrome P-450 CYP1A1 genetics MeSH
- Epoxide Hydrolases antagonists & inhibitors metabolism MeSH
- Glomerular Filtration Rate drug effects MeSH
- Hypertension chemically induced enzymology genetics physiopathology prevention & control MeSH
- Enzyme Inhibitors administration & dosage pharmacology MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Arachidonic Acids metabolism MeSH
- Hydroxyeicosatetraenoic Acids metabolism MeSH
- Kidney blood supply drug effects enzymology physiopathology MeSH
- Urea administration & dosage analogs & derivatives pharmacology MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Promoter Regions, Genetic MeSH
- Proteinuria metabolism physiopathology prevention & control MeSH
- Renal Plasma Flow drug effects MeSH
- Renin genetics metabolism MeSH
- Sodium urine MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- 4-(4-(3-adamantan-1-ylureido)cyclohexyloxy)benzoic acid MeSH Browser
- Angiotensin II MeSH
- Antihypertensive Agents MeSH
- Benzoates MeSH
- Cytochrome P-450 CYP1A1 MeSH
- EPHX2 protein, rat MeSH Browser
- Epoxide Hydrolases MeSH
- Enzyme Inhibitors MeSH
- Arachidonic Acids MeSH
- Hydroxyeicosatetraenoic Acids MeSH
- Urea MeSH
- Ren2 protein, mouse MeSH Browser
- Renin MeSH
- Sodium MeSH