Nejvíce citovaný článek - PubMed ID 20064277
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
- Klíčová slova
- Carassius auratus complex, asexuality, biotype, hybridization, ploidy level, sex determination, sexuality, species,
- MeSH
- Cyprinidae * MeSH
- cytogenetické vyšetření MeSH
- cytogenetika MeSH
- diploidie MeSH
- ploidie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The crucian carp Carassius carassius (Linnaeus, 1758), is native to many European freshwaters. Despite its wide distribution, the crucian carp is declining in both the number and sizes of populations across much of its range. Here we studied 30 individuals of a putative pure population from Helsinki, Finland. Despite clear external morphological features of C. carassius, an individual was of a higher ploidy level than the others. We therefore applied a set of molecular genetic (S7 nuclear and cytochrome b mitochondrial genes) and cytogenetic tools (sequential fluorescent 4', 6-diamidino-2-phenylindole [DAPI], Chromomycin A3 [CMA3], C-banding and in situ hybridization [FISH] with both 5S and 28S ribosomal DNA probes) to determine its origin. While all examined characteristics of a diploid representative male (CCAHe2Fi) clearly corresponded to those of C. carassius, a triploid individual (CCAHe1Fi) was more complex. Phylogenetic analysis revealed that the nuclear genome of CCAHe1Fi contained three haploid sets: two C. gibelio and one C. carassius. However the mitochondrial DNA was that of C. gibelio, demonstrating its hybrid origin. The FISH revealed three strong (more intensive) 5S rDNA loci, confirming the triploid status, and an additional 24 weak (less intensive) signals were observed in the chromosome complement of CCAHe1Fi. On the other hand, only two strong and 16 weak 5S rDNA signals were visible on the chromosomes of the CCAHe2Fi male. 28S rDNA FISH revealed four strong signals in both CCAHe1Fi and CCAHe2Fi individuals. CMA3 staining revealed four to six CMA3-positive bands of CCAHe1Fi, while that of diploids contained only two to four. The fact that a polyploid hybrid Carassius female with a strong invasive potential may share morphological characters typical for endangered C. carassius highlights a need to combine genetic investigations of Carassius cryptic diversity with conservation measures of C. carassius in Europe.
- MeSH
- diploidie MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genetické markery MeSH
- hybridizace genetická MeSH
- hybridizace in situ fluorescenční MeSH
- kapři anatomie a histologie klasifikace genetika MeSH
- karyotyp MeSH
- ohrožené druhy MeSH
- pruhování chromozomů MeSH
- triploidie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Finsko MeSH
- Názvy látek
- genetické markery MeSH
BACKGROUND: Carassius auratus complex is an extraordinary species complex including the diploid and polyploid forms exhibiting asexual and sexual reproduction modes. The coexistence of both forms in the same habitats is currently reported. The stable coexistence of asexual and sexual forms assumes some disadvantages for asexuals that balance the costs of sex. In our study, we hypothesized and tested the differences in physiological (including heamatological and immunological), growth-related, condition-related, and fitness-related traits between gynogenetic females and sexuals. RESULTS: Our results revealed similar growth performance in gynogenetic females and sexuals measured by body size and weight, or expressed by condition factor. The energy allocation in reproduction measured by the relative size of gonads revealed no difference between gynogenetic and sexual females; in addition, both females in spawning expressed the same estradiol levels in blood plasma. We found a gender specific trade-off between investment in reproduction and immunocompetence (measured by the spleen-somatic index). Higher aerobic performance expressed by the heart index and higher oxygen-carrying capacity were found in sexual males, with increasing values before and during spawning. Our study evidenced significantly lower aerobic performance but higher oxygen-carrying capacity per erythrocyte in gynogenetic females when compared to sexuals. IgM production differed between gynogens and sexuals of C. auratus complex. CONCLUSIONS: Our study indicates that a similar amount of energy is invested by both gynogenetic and sexual females of C. auratus complex in reproductive behaviour. We suggest that lower aerobic performance in gynogens may represent their physiological disadvantage balancing the cost of sexual reproduction. A trade-off between the number of erythrocytes and the oxygen-carrying capacity per erythrocyte in sexual males and gynogenetic females may contribute to the coexistence of gynogenetic and sexual forms. In addition, the differences in specific immunity between gynogens and sexuals may also reduce the evolutionary disadvantage of sexual reproduction. In conclusion, we propose that several mechanisms contribute to the coexistence of the gynogenetic-sexual C. auratus complex.
- MeSH
- biologická evoluce MeSH
- diploidie MeSH
- ekosystém MeSH
- karas zlatý anatomie a histologie genetika imunologie fyziologie MeSH
- rozmnožování MeSH
- triploidie MeSH
- vodní hospodářství ekonomika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH