Nejvíce citovaný článek - PubMed ID 24260701
Karyotype and chromosome banding of endangered crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae)
INTRODUCTION: Comparative cytogenetics is a vital approach for diagnosing chromosome abnormalities and identifying species-specific patterns. In this study, chromosomal analysis of three Anatolian endemic Cobitis species was performed: Cobitis bilseli, C. fahireae, and C. turcica. METHODS: Conventional cytogenetic techniques such as Giemsa staining, C-banding, and Ag-NOR staining were applied, followed by measurements of chromosome arm lengths including analysis of the measured data. RESULTS: The diploid chromosome number, 2n = 50, was determined for all three species. The karyotype formulas were as follows: four pairs of metacentric, 5 pairs of submetacentric, and 16 pairs of subtelo-telocentric chromosomes in C. bilseli; 11 pairs of metacentric, 7 pairs of submetacentric, and 7 pairs of subtelo-telocentric chromosomes in C. fahireae; and 4 pairs of metacentric, 4 pairs of submetacentric, and 17 pairs of subtelo-telocentric chromosomes in C. turcica. Dark C-bands were observed on the pericentromeres of nearly all chromosomes in C. bilseli and C. turcica, whereas light C-bands appeared on the pericentromeres of some chromosomes in C. fahireae. Silver-stained metaphases revealed signals on the short arm of a submetacentric chromosome pair in C. fahireae (each homologous chromosome carries one signal), while in C. bilseli and C. turcica, Ag-NOR signals were detected on the long arm of a single metacentric chromosome (only one homologous chromosome carries the signal, and the signal-carrying chromosome is the largest chromosome in the karyotype). CONCLUSION: This study provides new cytogenetic data consistent with the phylogenetic distances between the studied species, indicating that pericentric inversions and/or translocations govern the formation of Cobitis karyotypes. INTRODUCTION: Comparative cytogenetics is a vital approach for diagnosing chromosome abnormalities and identifying species-specific patterns. In this study, chromosomal analysis of three Anatolian endemic Cobitis species was performed: Cobitis bilseli, C. fahireae, and C. turcica. METHODS: Conventional cytogenetic techniques such as Giemsa staining, C-banding, and Ag-NOR staining were applied, followed by measurements of chromosome arm lengths including analysis of the measured data. RESULTS: The diploid chromosome number, 2n = 50, was determined for all three species. The karyotype formulas were as follows: four pairs of metacentric, 5 pairs of submetacentric, and 16 pairs of subtelo-telocentric chromosomes in C. bilseli; 11 pairs of metacentric, 7 pairs of submetacentric, and 7 pairs of subtelo-telocentric chromosomes in C. fahireae; and 4 pairs of metacentric, 4 pairs of submetacentric, and 17 pairs of subtelo-telocentric chromosomes in C. turcica. Dark C-bands were observed on the pericentromeres of nearly all chromosomes in C. bilseli and C. turcica, whereas light C-bands appeared on the pericentromeres of some chromosomes in C. fahireae. Silver-stained metaphases revealed signals on the short arm of a submetacentric chromosome pair in C. fahireae (each homologous chromosome carries one signal), while in C. bilseli and C. turcica, Ag-NOR signals were detected on the long arm of a single metacentric chromosome (only one homologous chromosome carries the signal, and the signal-carrying chromosome is the largest chromosome in the karyotype). CONCLUSION: This study provides new cytogenetic data consistent with the phylogenetic distances between the studied species, indicating that pericentric inversions and/or translocations govern the formation of Cobitis karyotypes.
- Klíčová slova
- Ag-NORs, C-banding, Centromeric index, Fish, Spined loach,
- MeSH
- chromozomy genetika MeSH
- diploidie MeSH
- druhová specificita MeSH
- karyotyp * MeSH
- karyotypizace MeSH
- pruhování chromozomů MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Turecko MeSH
Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.
- Klíčová slova
- FISH, U1 and U2 snDNAs, chromosome painting, histone H3, polyploidy, teleost fish,
- MeSH
- Cyprinidae * MeSH
- cytogenetické vyšetření MeSH
- polyploidie MeSH
- segmentové duplikace * MeSH
- tandemové repetitivní sekvence MeSH
- tetraploidie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The organization of the genome nucleotide (AT/GC) composition in vertebrates remains poorly understood despite the numerous genome assemblies available. Particularly, the origin of the AT/GC heterogeneity in amniotes, in comparison to the homogeneity in anamniotes, is controversial. Recently, several exceptions to this dichotomy were confirmed in an ancient fish lineage with mammalian AT/GC heterogeneity. Hence, our current knowledge necessitates a reevaluation considering this fact and utilizing newly available data and tools. We analyzed fish genomes in silico with as low user input as possible to compare previous approaches to assessing genome composition. Our results revealed a disparity between previously used plots of GC% and histograms representing the authentic distribution of GC% values in genomes. Previous plots heavily reduced the range of GC% values in fish to comply with the alleged AT/GC homogeneity and AT-richness of their genomes. We illustrate how the selected sequence size influences the clustering of GC% values. Previous approaches that disregarded chromosome and genome sizes, which are about three times smaller in fish than in mammals, distorted their results and contributed to the persisting confusion about fish genome composition. Chromosome size and their transposons may drive the AT/GC heterogeneity apparent on mammalian chromosomes, whereas far less in fishes.
- Klíčová slova
- AT/GC genome composition, GC-content evolution transposons, natural breaks,
- MeSH
- délka genomu MeSH
- isochory * genetika MeSH
- ryby * genetika MeSH
- savčí chromozomy MeSH
- savci MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isochory * MeSH
Sexual vs. asexual reproduction-unisexual vs. bisexual populations-diploid vs. polyploid biotypes-genetic vs. environmental sex determination: all these natural phenomena are associated with the genus of teleost fish, Carassius. This review places emphasis on two Carassius entities with completely different biological characteristics: one globally widespread and invasive Carassius gibelio, and the other C. carassius with a decreasing trend of natural occurrence. Comprehensive biological and cytogenetic knowledge of both entities, including the physical interactions between them, can help to balance the advantages of highly invasive and disadvantages of threatened species. For example, the benefits of a wide-ranged colonization can lead to the extinction of native species or be compensated by parasitic enemies and lead to equilibrium. This review emphasizes the comprehensive biology and cytogenetic knowledge and the importance of the Carassius genus as one of the most useful experimental vertebrate models for evolutionary biology and genetics. Secondly, the review points out that effective molecular cytogenetics should be used for the identification of various species, ploidy levels, and hybrids. The proposed investigation of these hallmark characteristics in Carassius may be applied in conservation efforts to sustain threatened populations in their native ranges. Furthermore, the review focuses on the consequences of the co-occurrence of native and non-native species and outlines future perspectives of Carassius research.
- Klíčová slova
- Carassius auratus complex, asexuality, biotype, hybridization, ploidy level, sex determination, sexuality, species,
- MeSH
- Cyprinidae * MeSH
- cytogenetické vyšetření MeSH
- cytogenetika MeSH
- diploidie MeSH
- ploidie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The widely distributed ray-finned fish genus Carassius is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled Carassius species to be successfully widespread over relatively short period of evolutionary time. Therefore, this fish model deserves to be the center of attention in the research field. Some studies have already described the Carassius karyotype, but results are inconsistent in the number of morphological categories for individual chromosomes. We investigated three focal species: Carassius auratus, C. carassius and C. gibelio with the aim to describe their standardized diploid karyotypes, and to study their evolutionary relationships using cytogenetic tools. We measured length (q+plength) of each chromosome and calculated centromeric index (i value). We found: (i) The relationship between q+plength and i value showed higher similarity of C. auratus and C. carassius. (ii) The variability of i value within each chromosome expressed by means of the first quartile (Q1) up to the third quartile (Q3) showed higher similarity of C. carassius and C. gibelio. (iii) The fluorescent in situ hybridization (FISH) analysis revealed higher similarity of C. auratus and C. gibelio. (iv) Standardized karyotype formula described using median value (Q2) showed differentiation among all investigated species: C. auratus had 24 metacentric (m), 40 submetacentric (sm), 2 subtelocentric (st), 2 acrocentric (a) and 32 telocentric (T) chromosomes (24m+40sm+2st+2a+32T); C. carassius: 16m+34sm+8st+42T; and C. gibelio: 16m+22sm+10st+2a+50T. (v) We developed R scripts applicable for the description of standardized karyotype for any other species. The diverse results indicated unprecedented complex genomic and chromosomal architecture in the genus Carassius probably influenced by its unique biological characteristics which make the study of evolutionary relationships more difficult than it has been originally postulated.
- Klíčová slova
- Carassius auratus, Carassius carassius, Carassius gibelio, chromosome, i value, in situ hybridization, karyogram, q/p arm ratio,
- MeSH
- chromozomy genetika MeSH
- diploidie MeSH
- fylogeneze MeSH
- genetická variace genetika MeSH
- genom genetika MeSH
- hybridizace in situ fluorescenční metody MeSH
- kapři genetika MeSH
- karas zlatý genetika MeSH
- karyotyp MeSH
- karyotypizace metody MeSH
- mapování chromozomů metody MeSH
- polyploidie MeSH
- ryby genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The crucian carp Carassius carassius (Linnaeus, 1758), is native to many European freshwaters. Despite its wide distribution, the crucian carp is declining in both the number and sizes of populations across much of its range. Here we studied 30 individuals of a putative pure population from Helsinki, Finland. Despite clear external morphological features of C. carassius, an individual was of a higher ploidy level than the others. We therefore applied a set of molecular genetic (S7 nuclear and cytochrome b mitochondrial genes) and cytogenetic tools (sequential fluorescent 4', 6-diamidino-2-phenylindole [DAPI], Chromomycin A3 [CMA3], C-banding and in situ hybridization [FISH] with both 5S and 28S ribosomal DNA probes) to determine its origin. While all examined characteristics of a diploid representative male (CCAHe2Fi) clearly corresponded to those of C. carassius, a triploid individual (CCAHe1Fi) was more complex. Phylogenetic analysis revealed that the nuclear genome of CCAHe1Fi contained three haploid sets: two C. gibelio and one C. carassius. However the mitochondrial DNA was that of C. gibelio, demonstrating its hybrid origin. The FISH revealed three strong (more intensive) 5S rDNA loci, confirming the triploid status, and an additional 24 weak (less intensive) signals were observed in the chromosome complement of CCAHe1Fi. On the other hand, only two strong and 16 weak 5S rDNA signals were visible on the chromosomes of the CCAHe2Fi male. 28S rDNA FISH revealed four strong signals in both CCAHe1Fi and CCAHe2Fi individuals. CMA3 staining revealed four to six CMA3-positive bands of CCAHe1Fi, while that of diploids contained only two to four. The fact that a polyploid hybrid Carassius female with a strong invasive potential may share morphological characters typical for endangered C. carassius highlights a need to combine genetic investigations of Carassius cryptic diversity with conservation measures of C. carassius in Europe.
- MeSH
- diploidie MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genetické markery MeSH
- hybridizace genetická MeSH
- hybridizace in situ fluorescenční MeSH
- kapři anatomie a histologie klasifikace genetika MeSH
- karyotyp MeSH
- ohrožené druhy MeSH
- pruhování chromozomů MeSH
- triploidie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Finsko MeSH
- Názvy látek
- genetické markery MeSH