Nejvíce citovaný článek - PubMed ID 20876691
Psyllids (Hemiptera: Psylloidea) are plant sap-sucking insects whose identification is often difficult for non-experts. Despite the rapid development of DNA barcoding techniques and their widespread use, only a limited number of sequences of psyllids are available in the public databases, and those that are available are often misidentified. Here, we provide 80 sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and cytochrome b (Cytb), for 25 species of Aphalaridae, mainly from Bulgaria. The DNA barcodes for 15 of these species are published for the first time. In cases where standard primers failed to amplify the target gene fragment, we designed new primers that can be used in future studies. The distance-based thresholds for the analysed species were between 0.0015 and 0.3415 for COI and 0.0771 and 0.4721 for Cytb, indicating that the Cytb gene has a higher interspecific divergence, compared to COI, and therefore allows for more accurate species identification. The species delimitation based on DNA barcodes is largely consistent with the differences resulting from morphological and host plant data, demonstrating that the use of DNA barcodes is suitable for successful identification of most aphalarid species studied. The phylogenetic reconstruction based on maximum likelihood and Bayesian inference analyses, while showing similar results at high taxonomic levels to previously published phylogenies, provides additional information on the placement of aphalarids at the species level. The following five species represent new records for Bulgaria: Agonoscena targionii, Aphalara affinis, Colposcenia aliena, Co. bidentata, and Craspedolepta malachitica. Craspedolepta conspersa is reported for the first time from the Czech Republic, while Agonoscena cisti is reported for the first time from Albania.
- Klíčová slova
- DNA barcoding, distance-based method, phylogeny, psyllids, rapid species identification, sequence database,
- Publikační typ
- časopisecké články MeSH
Elateridae is a taxon with very unstable classification and a number of conflicting phylogenetic hypotheses have been based on morphology and molecular data. We assembled eight complete mitogenomes for seven elaterid subfamilies and merged these taxa with an additional 22 elaterids and an outgroup. The structure of the newly produced mitogenomes showed a very similar arrangement with regard to all earlier published mitogenomes for the Elateridae. The maximum likelihood and Bayesian analyses indicated that Hapatesus Candèze, 1863, is a sister of Parablacinae and Pityobiinae. Therefore, Hapatesinae, a new subfamily, is proposed for the Australian genera Hapatesus (21 spp.) and Toorongus Neboiss, 1957 (4 spp.). Parablacinae, Pityobiinae, and Hapatesinae have a putative Gondwanan origin as the constituent genera are known from the Australian region (9 genera) and Neotropical region (Tibionema Solier, 1851), and only Pityobius LeConte, 1853, occurs in the Nearctic region. Another putative Gondwanan lineage, the Afrotropical Morostomatinae, forms either a serial paraphylum with the clade of Parablacinae, Pityobiinae, and Hapatesinae or is rooted in a more terminal position, but always as an independent lineage. An Eudicronychinae lineage was either recovered as a sister to Melanotini or as a deep split inside Elaterinae and we herein transfer the group to Elaterinae as Eudicronychini, a new status. The mitochondrial genomes provide a sufficient signal for the placement of most lineages, but the deep bipartitions need to be compared with phylogenomic analyses.
- Klíčová slova
- Australian region, Gondwana, mitochondrial genomes, new status, new subfamily, phylogeny, taxonomy,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Rhinorhipidae Lawrence, 1988 is an enigmatic beetle family represented by a single species, Rhinorhipus tamborinensis Lawrence, 1988, from Australia, with poorly established affinities near the superfamily Elateroidea (click beetles, soldier beetles and fireflies) or the more inclusive series (infraorder) Elateriformia. Its evolutionary position may inform the basal relationships of the suborder Polyphaga, the largest clade of Coleoptera. RESULTS: We analyzed four densely sampled DNA datasets of major coleopteran lineages for mitogenomes, rRNA genes and single copy nuclear genes. Additionally, genome sequencing was used for incorporation of R. tamborinensis into a set of 4220 orthologs for 24 terminals representing 12 polyphagan superfamilies. Topologies differed to various degrees, but all consistently refute the proposed placement of Rhinorhipidae in Elateroidea and instead indicate either sister relationships with other Elateriformia, frequently together with Nosodendridae, another divergent small family hitherto placed in Derodontoidea, or in an isolated position among the deepest lineages of Polyphaga. The phylogenomic analyses recovered Rhinorhipus in a sister position to all other Elateriformia composed of five superfamilies. Therefore, we erect the new superfamily Rhinorhipoidea Lawrence, 1988, stat. Nov., with the type-family Rhinorhipidae. The origins of the Rhinorhipidae were dated to the Upper Triassic/Lower Jurassic at the very early phase of polyphagan diversification. CONCLUSIONS: Thus, Rhinorhipidae adds another example to several recently recognized ancient relict lineages which are interspersed within contemporaneous hugely species-rich lineages of Coleoptera.
- Klíčová slova
- Elateriformia, Molecular phylogeny, New superfamily, Phylotranscriptomics, Rhinorhipidae, Triassic,
- Publikační typ
- časopisecké články MeSH
The development of modern methods of species delimitation, unified under the "integrated taxonomy" approach, allows a critical examination and re-evaluation of complex taxonomic groups. The rose chafer Protaetia (Potosia) cuprea is a highly polymorphic species group with a large distribution range. Despite its overall commonness, its taxonomy is unclear and subject to conflicting hypotheses, most of which largely fail to account for its evolutionary history. Based on the sequences of two mitochondrial markers from 65 individuals collected across the species range, and a detailed analysis of morphological characters including a geometric morphometry approach, we infer the evolutionary history and phylogeography of the P. cuprea species complex. Our results demonstrate the existence of three separate lineages in the Western Palearctic region, presumably with a species status. However, these lineages are in conflict with current taxonomic concepts. None of the 29 analyzed morphological characters commonly used in the taxonomy of this group proved to be unambiguously species- or subspecies- specific. The geometric morphometry analysis reveals a large overlap in the shape of the analyzed structures (pronotum, meso-metaventral projection, elytra and aedeagus), failing to identify either the genetically detected clades or the classical species entities. Our results question the monophyly of P. cuprea in regard to P. cuprina, as well as the species status of P. metallica. On the other hand, we found support for the species status of the Sicilian P. hypocrita. Collectively, our findings provide a new and original insight into the taxonomy and phylogeny of the P. cuprea species complex. At the same time, the results represent the first attempt to elucidate the phylogeography of these polymorphic beetles.
Mitochondrial genomes are readily sequenced with recent technology and thus evolutionary lineages can be densely sampled. This permits better phylogenetic estimates and assessment of potential biases resulting from heterogeneity in nucleotide composition and rate of change. We gathered 245 mitochondrial sequences for the Coleoptera representing all 4 suborders, 15 superfamilies of Polyphaga, and altogether 97 families, including 159 newly sequenced full or partial mitogenomes. Compositional heterogeneity greatly affected 3rd codon positions, and to a lesser extent the 1st and 2nd positions, even after RY coding. Heterogeneity also affected the encoded protein sequence, in particular in the nad2, nad4, nad5, and nad6 genes. Credible tree topologies were obtained with the nhPhyML ("nonhomogeneous") algorithm implementing a model for branch-specific equilibrium frequencies. Likelihood searches using RAxML were improved by data partitioning by gene and codon position. Finally, the PhyloBayes software, which allows different substitution processes for amino acid replacement at various sites, produced a tree that best matched known higher level taxa and defined basal relationships in Coleoptera. After rooting with Neuropterida outgroups, suborder relationships were resolved as (Polyphaga (Myxophaga (Archostemata + Adephaga))). The infraorder relationships in Polyphaga were (Scirtiformia (Elateriformia ((Staphyliniformia + Scarabaeiformia) (Bostrichiformia (Cucujiformia))))). Polyphagan superfamilies were recovered as monophyla except Staphylinoidea (paraphyletic for Scarabaeiformia) and Cucujoidea, which can no longer be considered a valid taxon. The study shows that, although compositional heterogeneity is not universal, it cannot be eliminated for some mitochondrial genes, but dense taxon sampling and the use of appropriate Bayesian analyses can still produce robust phylogenetic trees.
- Klíčová slova
- PhyloBayes, RY coding, long-range PCR, mitogenomes, mixture models, rogue taxa,
- MeSH
- brouci klasifikace genetika MeSH
- fylogeneze * MeSH
- genetická heterogenita * MeSH
- genom hmyzu * MeSH
- genom mitochondriální * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.
- Klíčová slova
- Coleoptera, Illumina MiSeq, biodiversity, bulk samples, community ecology, metagenome skimming, mitochondrial genomes, mitochondrial metagenomics, phylogeny, tree-of-life,
- MeSH
- brouci genetika MeSH
- deštný prales MeSH
- frekvence genu MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom mitochondriální MeSH
- hmyzí geny MeSH
- kontigové mapování MeSH
- metagenom MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Borneo MeSH
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
- Klíčová slova
- Repetitive DNA, continuous characters, genomics, molecular systematics, next-generation sequencing, phylogenetics,
- MeSH
- DNA rostlinná genetika MeSH
- Drosophila klasifikace genetika MeSH
- fylogeneze * MeSH
- genom genetika MeSH
- hmyzí geny genetika MeSH
- Magnoliopsida genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH