Nejvíce citovaný článek - PubMed ID 21693695
Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.
- Klíčová slova
- Arabidopsis, ectopic cell division, katanin, light-sheet fluorescence microscopy, live cell imaging, microtubules, root development,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. METHODS: Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. KEY RESULTS: Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. CONCLUSIONS: Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development.
- MeSH
- aktiny genetika metabolismus MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- mutace * MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACT2 protein, Arabidopsis MeSH Prohlížeč
- aktiny MeSH
- proteiny huseníčku MeSH
The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses.
- Klíčová slova
- DELLA, gibberellin, microtubules, polar auxin transport, vesicle trafficking,
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- buněčná membrána metabolismus MeSH
- gibereliny farmakologie MeSH
- kyseliny indoloctové farmakologie MeSH
- mikrotubuly metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin farmakologie MeSH
- signální transdukce MeSH
- transport proteinů MeSH
- třídící nexiny genetika metabolismus MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GAI protein, Arabidopsis MeSH Prohlížeč
- gibereliny MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH
- SNX1 protein, Arabidopsis MeSH Prohlížeč
- třídící nexiny MeSH
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
- MeSH
- aktiny metabolismus MeSH
- anotace sekvence MeSH
- Arabidopsis genetika metabolismus MeSH
- biologie buňky * MeSH
- genová ontologie MeSH
- katanin genetika MeSH
- mapy interakcí proteinů MeSH
- mikrotubuly metabolismus MeSH
- mutace genetika MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteom metabolismus MeSH
- proteomika metody MeSH
- rostlinné geny MeSH
- zpětná vazba fyziologická * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aktiny MeSH
- katanin MeSH
- KTN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteom MeSH
Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular microtubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Müller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility; the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (= cross-linking protein complexes), presumably of actin nature.
BACKGROUND: Cytoskeleton can be observed in live plant cells in situ with high spatial and temporal resolution using a combination of specific fluorescent protein tag expression and advanced microscopy methods such as spinning disc confocal microscopy (SDCM) or variable angle epifluorescence microscopy (VAEM). Existing methods for quantifying cytoskeletal dynamics are often either based on laborious manual structure tracking, or depend on costly commercial software. Current automated methods also do not readily allow separate measurements of structure lifetime, lateral mobility, and spatial anisotropy of these parameters. RESULTS: We developed a new freeware-based, operational system-independent semi-manual technique for analyzing VAEM or SDCM data, QuACK (Quantitative Analysis of Cytoskeletal Kymograms), and validated it on data from Arabidopsis thaliana fh1 formin mutants, previously shown by conventional methods to exhibit altered actin and microtubule dynamics compared to the wild type. Besides of confirming the published mutant phenotype, QuACK was used to characterize surprising differential effects of various fluorescent protein tags fused to the Lifeact actin probe on actin dynamics in A. thaliana cotyledon epidermis. In particular, Lifeact-YFP slowed down actin dynamics compared to Lifeact-GFP at marker expression levels causing no macroscopically noticeable phenotypic alterations, although the two fluorophores are nearly identical. We could also demonstrate the expected, but previously undocumented, anisotropy of cytoskeletal dynamics in elongated epidermal cells of A. thaliana petioles and hypocotyls. CONCLUSIONS: Our new method for evaluating plant cytoskeletal dynamics has several advantages over existing techniques. It is intuitive, rapid compared to fully manual approaches, based on the free ImageJ software (including macros we provide here for download), and allows measurement of multiple parameters. Our approach was already used to document unexpected differences in actin mobility in transgenic A. thaliana expressing Lifeact fusion proteins with different fluorophores, highlighting the need for cautious interpretation of experimental results, as well as to reveal hitherto uncharacterized anisotropy of cytoskeletal mobility in elongated plant cells.
- Klíčová slova
- Actin, Anisotropy, FH1 (At3g25500), Kymogram, Lateral mobility, Lifeact, Microtubules, Spinning disc confocal microscopy, Structure stability, Variable angle fluorescence microscopy,
- Publikační typ
- časopisecké články MeSH
Development of the plant aerial organs epidermis involves a complex interplay of cytoskeletal rearrangements, membrane trafficking-dependent cell surface expansion, and intra- and intercellular signaling, resulting in a pattern of perfectly interlocking pavement cells. While recent detailed in vivo observations convincingly identify microtubules rather than actin as key players at the early stages of development of pavement cell lobes in Arabidopsis, mutations affecting the actin-nucleating ARP2/3 complex are long known to reduce pavement cell lobing, suggesting a central role for actin. We have now shown that functional impairment of the Arabidopsis formin FH1 enhances both microtubule dynamics and pavement cell lobing. While formins are best known for their ability to nucleate actin, many members of this old gene family now emerge as direct or indirect regulators of the microtubule cytoskeleton, and our findings suggest that they might co-ordinate action of the two cytoskeletal systems during pavement cell morphogenesis.
- Klíčová slova
- Actin, FH2 proteins, cell growth, epidermal pavement cells, formins, microtubules,
- MeSH
- Arabidopsis růst a vývoj metabolismus ultrastruktura MeSH
- biologické modely MeSH
- cytoskelet metabolismus fyziologie ultrastruktura MeSH
- forminy MeSH
- membránové proteiny genetika metabolismus fyziologie MeSH
- mikrotubuly metabolismus fyziologie ultrastruktura MeSH
- multigenová rodina MeSH
- proteiny huseníčku genetika metabolismus fyziologie MeSH
- rostlinné buňky metabolismus ultrastruktura MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AFH1 protein, Arabidopsis MeSH Prohlížeč
- forminy MeSH
- membránové proteiny MeSH
- proteiny huseníčku MeSH
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
- Klíčová slova
- MAP, microtubules, multifunctional MAP, plants, tubulin,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Long-term fluorescence live-cell imaging experiments have long been limited by the effects of excitation-induced phototoxicity. The advent of light-sheet microscopy now allows users to overcome this limitation by restricting excitation to a narrow illumination plane. In addition, light-sheet imaging allows for high-speed image acquisition with uniform illumination of samples composed of multiple cell layers. The majority of studies conducted thus far have used custom-built platforms with specialized hardware and software, along with specific sample handling approaches. The first versatile commercially available light-sheet microscope, Lightsheet Z.1, offers a number of innovative solutions, but it requires specific strategies for sample handling during long-term imaging experiments. There are currently no standard procedures describing the preparation of plant specimens for imaging with the Lightsheet Z.1. Here we describe a detailed protocol to prepare plant specimens for light-sheet microscopy, in which Arabidopsis seeds or seedlings are placed in solid medium within glass capillaries or fluorinated ethylene propylene tubes. Preparation of plant material for imaging may be completed within one working day.
Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin-microtubule cross-talk.
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- forminy MeSH
- kořeny rostlin genetika růst a vývoj metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- mikrofilamenta genetika metabolismus MeSH
- mikrotubuly genetika metabolismus MeSH
- mutace * MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AFH1 protein, Arabidopsis MeSH Prohlížeč
- forminy MeSH
- membránové proteiny MeSH
- proteiny huseníčku MeSH