Most cited article - PubMed ID 22132181
Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment
The gut microbiota influences the reactivity of the immune system, and Parabacteroides distasonis has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured P. distasonis (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses. One week later, EAE was induced and disease severity was assessed three weeks after induction. Fecal microbiota changes in both vehicle- and Pd lysate-treated animals was analyzed by 16S V3-V4 amplicon sequencing and qPCR, antimicrobial peptide expression in the intestinal mucosa was measured by qPCR, and immune cell composition in the mesenteric and inguinal lymph nodes was measured by multicolor flow cytometry. Pd lysate significantly delayed the development of EAE and reduced its severity when administered prior to disease induction. EAE induction was the main factor in altering the gut microbiota, decreasing the abundance of lactobacilli and segmented filamentous bacteria. Pd lysate significantly increased the intestinal abundance of the genera Anaerostipes, Parabacteroides and Prevotella, and altered the expression of antimicrobial peptides in the intestinal mucosa. It significantly increased the frequency of regulatory T cells, induced an anti-inflammatory milieu in mesenteric lymph nodes, and reduced the activation of T cells at the priming site. Pd lysate prevents severe forms of EAE by triggering a T regulatory response and modulating T cell priming to autoantigens. Pd lysate could thus be a future modulator of neuroinflammation that increases the resistance to multiple sclerosis.
- Keywords
- Parabacteroides distasonis, experimental autoimmune encephalomyelitis, inflammation, microbiota, multiple sclerosis, regulatory T cells,
- MeSH
- Bacteroidetes immunology MeSH
- Encephalomyelitis, Autoimmune, Experimental * immunology prevention & control MeSH
- Mice, Inbred C57BL * MeSH
- Mice MeSH
- Gastrointestinal Microbiome * immunology MeSH
- Intestinal Mucosa immunology microbiology metabolism MeSH
- T-Lymphocytes immunology metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Psoriasis is a chronic, immune-mediated, inflammatory disease primarily affecting the skin. It is currently coming to light that patients with psoriasis have disrupted intestinal barrier and often suffer from comorbidities associated with the gastrointestinal tract. Moreover, there is growing evidence of both cutaneous and intestinal paradoxical reactions during biologic treatment in patients with psoriasis. This review focuses on barrier defects and changes in immune responses in patients with psoriasis, which play an important role in the development of the disease but are also influenced by modern biological treatments targeting IL-17 and TNFα cytokines. Here, we highlight the relationship between the gut-skin axis, microbiota, psoriasis treatment, and the incidence of paradoxical reactions, such as inflammatory bowel disease in patients with psoriasis. A better understanding of the interconnection of these mechanisms could lead to a more personalized therapy and lower the incidence of treatment side effects, thereby improving the quality of life of the affected patients.
- Keywords
- Biologics, Gut microbiota, Gut–skin axis, IBD, IL-17, Psoriasis, Skin adverse events, Skin microbiota, TNFα,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Ustekinumab, is a new therapy for patients with IBD, especially for patients suffering from Crohn's disease (CD) who did not respond to anti-TNF treatment. To shed light on the longitudinal effect of ustekinumab on the immune system, we investigated the effect on skin and gut microbiota composition, specific immune response to commensals, and various serum biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: We recruited 11 patients with IBD who were monitored over 40 weeks of ustekinumab therapy and 39 healthy controls (HC). We found differences in the concentrations of serum levels of osteoprotegerin, TGF-β1, IL-33, and serum IgM antibodies against Lactobacillus plantarum between patients with IBD and HC. The levels of these biomarkers did not change in response to ustekinumab treatment or with disease improvement during the 40 weeks of observation. Additionally, we identified differences in stool abundance of uncultured Subdoligranulum, Faecalibacterium, and Bacteroides between patients with IBD and HC. CONCLUSION/SIGNIFICANCE: In this preliminary study, we provide a unique overview of the longitudinal monitoring of fecal and skin microbial profiles as well as various serum biomarkers and humoral and cellular response to gut commensals in a small cohort of patients with IBD on ustekinumab therapy.
- MeSH
- Biomarkers MeSH
- Crohn Disease * therapy MeSH
- Tumor Necrosis Factor Inhibitors MeSH
- Humans MeSH
- Microbiota * MeSH
- Pilot Projects MeSH
- Ustekinumab therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Tumor Necrosis Factor Inhibitors MeSH
- Ustekinumab MeSH
Early postnatal events are important for the development of the neonatal immune system. Harboring the pioneering microorganisms forming the microbiota of the neonatal gastrointestinal tract is important for priming the immune system, as well as inducing appropriate tolerance to the relatively innocuous environmental antigens and compounds of normal healthy microbiota. Early postnatal supplementation of suitable, safe probiotics could accelerate this process. In the current study, the immunomodulatory capacity of the probiotic strain of Escherichia coli O83:K24:H31 (EcO83) was characterized in vitro and in vivo. We compared the capacity of EcO83 with and without hemolytic activity on selected immune characteristics in vitro as determined by flow cytometry and quantitative real-time PCR. Both strains with and without hemolytic activity exerted comparable capacity on the maturation of dendritic cells while preserving the induction of interleukin 10 (Il10) expression in dendritic cells and T cells cocultured with EcO83 primed dendritic cells. Early postnatal supplementation with EcO83 led to massive but transient colonization of the neonatal gastrointestinal tract, as detected by in vivo bioimaging. Early postnatal EcO83 administration promoted gut barrier function by increasing the expression of claudin and occludin and the expression of Il10. Early postnatal EcO83 application promotes maturation of the neonatal immune system and promotes immunoregulatory and gut barrier functions.
- Keywords
- E. coli O83:K24:H31, IL-10, dendritic cell, early postnatal probiotic administration, indol amine 2,3 dioxygenase, luciferase, probiotic,
- MeSH
- Dendritic Cells MeSH
- Escherichia coli MeSH
- Interleukin-10 MeSH
- Humans MeSH
- Microbiota * MeSH
- Infant, Newborn MeSH
- Probiotics * pharmacology MeSH
- Check Tag
- Humans MeSH
- Infant, Newborn MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Interleukin-10 MeSH
Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract that have been linked to microbiome dysbiosis and immune system dysregulation. We investigated the longitudinal effect of anti-TNF therapy on gut microbiota composition and specific immune response to commensals in IBD patients. The study included 52 patients tracked over 38 weeks of therapy and 37 healthy controls (HC). To characterize the diversity and composition of the gut microbiota, we used amplicon sequencing of the V3V4 region of 16S rRNA for the bacterial community and of the ITS1 region for the fungal community. We measured total antibody levels as well as specific antibodies against assorted gut commensals by ELISA. We found diversity differences between HC, Crohn's disease, and ulcerative colitis patients. The bacterial community of patients with IBD was more similar to HC at the study endpoint, suggesting a beneficial shift in the microbiome in response to treatment. We identified factors such as disease severity, localization, and surgical intervention that significantly contribute to the observed changes in the gut bacteriome. Furthermore, we revealed increased IgM levels against specific gut commensals after anti-TNF treatment. In summary, this study, with its longitudinal design, brings insights into the course of anti-TNF therapy in patients with IBD and correlates the bacterial diversity with disease severity in patients with ulcerative colitis (UC).
- Keywords
- biological therapy, inflammatory bowel disease, microbiome, mycobiome, tumor necrosis factor-α,
- MeSH
- Biodiversity MeSH
- Adult MeSH
- Feces microbiology MeSH
- Fungi genetics MeSH
- Inflammatory Bowel Diseases blood drug therapy microbiology surgery MeSH
- Tumor Necrosis Factor Inhibitors therapeutic use MeSH
- Interleukin-17 metabolism MeSH
- Leukocytes, Mononuclear metabolism MeSH
- Humans MeSH
- Metagenomics MeSH
- Antibodies blood MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Gastrointestinal Microbiome * genetics MeSH
- Case-Control Studies MeSH
- Severity of Illness Index MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Tumor Necrosis Factor Inhibitors MeSH
- Interleukin-17 MeSH
- Antibodies MeSH
- RNA, Ribosomal, 16S MeSH
Non-infectious uveitis is considered an autoimmune disease responsible for a significant burden of blindness in developed countries and recent studies have linked its pathogenesis to dysregulation of the gut microbiota. We tested the immunomodulatory properties of two probiotics, Escherichia coli Nissle 1917 (EcN) and E. coli O83:K24:H31 (EcO), in a model of experimental autoimmune uveitis (EAU). To determine the importance of bacterial viability and treatment timing, mice were orally treated with live or autoclaved bacteria in both preventive and therapeutic schedules. Disease severity was assessed by ophthalmoscopy and histology, immune phenotypes in mesenteric and cervical lymph nodes were analyzed by flow cytometry and the gut immune environment was analyzed by RT-PCR and/or gut tissue culture. EcN, but not EcO, protected against EAU but only as a live organism and only when administered before or at the time of disease induction. Successful prevention of EAU was accompanied by a decrease in IRBP-specific T cell response in the lymph nodes draining the site of immunization as early as 7 days after the immunization and eye-draining cervical lymph nodes when the eye inflammation became apparent. Furthermore, EcN promoted an anti-inflammatory response in Peyer's patches, increased gut antimicrobial peptide expression and decreased production of inducible nitric oxide synthase in macrophages. In summary, we show here that EcN controls inflammation in EAU and suggest that probiotics may have a role in regulating the gut-eye axis.
- Keywords
- Escherichia coli Nissle 1917, experimental autoimmune uveitis, macrophages, mucosal immune system, probiotics,
- MeSH
- Autoimmune Diseases therapy MeSH
- Escherichia coli * MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Probiotics * administration & dosage pharmacology MeSH
- Intestinal Mucosa pathology MeSH
- Uveitis therapy MeSH
- Inflammation therapy MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Diet is a strong modifier of microbiome and mucosal microenvironment in the gut. Recently, components of western-type diets have been associated with metabolic and immune diseases. Here, we studied how high-sugar diet (HSD) consumption influences gut mucosal barrier and immune response under steady state conditions and in a mouse model of acute colitis. We found that HSD significantly increased gut permeability, spleen weight, and neutrophil levels in spleens of healthy mice. Subsequent dextran sodium sulfate administration led to severe colitis. In colon, HSD significantly promoted neutrophil infiltration and increased the levels of IL-6, IL-1β, and TNF-α. Moreover, HSD-fed mice had significantly higher abundance of pathobionts, such as Escherichia coli and Candida, in fecal samples. Although germ-free mice colonized with microbiota of conventionally reared mice that consumed different diets had equally severe colitis, mice colonized with HSD microbiota showed markedly increased infiltration of neutrophils to the gut. The induction of colitis in Toll-like receptor 4 (TLR4)-deficient HSD-fed mice led to significantly milder colitis than in wild-type mice. In conclusion, our results suggested a significant role of HSD in disruption of barrier integrity and balanced mucosal and systemic immune response. In addition, these processes seemed to be highly influenced by resident potentially pathogenic microbiota or metabolites via the TLR4 signaling pathway.
- Keywords
- high-sugar diet, inflammatory bowel diseases, metabolites, microbiome, mucosal barrier, neutrophils,
- MeSH
- Chronic Disease MeSH
- Diet * MeSH
- DNA-Binding Proteins deficiency metabolism MeSH
- Feces MeSH
- Colitis genetics immunology pathology MeSH
- Monosaccharides adverse effects MeSH
- Mice, Inbred BALB C MeSH
- Permeability MeSH
- Gene Expression Regulation MeSH
- Signal Transduction * MeSH
- Dextran Sulfate MeSH
- Immunity, Mucosal MeSH
- Intestines pathology MeSH
- Gastrointestinal Microbiome * MeSH
- Severity of Illness Index MeSH
- T-Lymphocytes immunology MeSH
- Toll-Like Receptor 4 metabolism MeSH
- Inflammation microbiology pathology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA-Binding Proteins MeSH
- Monosaccharides MeSH
- Rag2 protein, mouse MeSH Browser
- Dextran Sulfate MeSH
- Toll-Like Receptor 4 MeSH
Recurrent aphthous stomatitis (RAS) is the most common disease of the oral mucosa, and it has been recently associated with bacterial and fungal dysbiosis. To study this link further, we investigated microbial shifts during RAS manifestation at an ulcer site, in its surroundings, and at an unaffected site, compared with healed mucosa in RAS patients and healthy controls. We sampled microbes from five distinct sites in the oral cavity. The one site with the most pronounced differences in microbial alpha and beta diversity between RAS patients and healthy controls was the lower labial mucosa. Detailed analysis of this particular oral site revealed strict association of the genus Selenomonas with healed mucosa of RAS patients, whereas the class Clostridia and genera Lachnoanaerobaculum, Cardiobacterium, Leptotrichia, and Fusobacterium were associated with the presence of an active ulcer. Furthermore, active ulcers were dominated by Malassezia, which were negatively correlated with Streptococcus and Haemophilus and positively correlated with Porphyromonas species. In addition, RAS patients showed increased serum levels of IgG against Mogibacterium timidum compared with healthy controls. Our study demonstrates that the composition of bacteria and fungi colonizing healthy oral mucosa is changed in active RAS ulcers, and that this alteration persists to some extent even after the ulcer is healed.
- Keywords
- microbiome, mycobiome, oral mucosa,
- Publication type
- Journal Article MeSH
Diet is a major factor determining gut microbiota composition and perturbances in this complex ecosystem are associated with the inflammatory bowel disease (IBD). Here, we used gnotobiotic approach to analyze, how interaction between diet rich in proteins and gut microbiota influences the sensitivity to intestinal inflammation in murine model of ulcerative colitis. We found that diet rich in animal protein (aHPD) exacerbates acute dextran sulfate sodium (DSS)-induced colitis while diet rich in plant protein (pHPD) does not. The deleterious effect of aHPD was also apparent in chronic DSS colitis and was associated with distinct changes in gut bacteria and fungi. Therefore, we induced acute DSS-colitis in germ-free mice and transferred gut microbiota from aCD or aHPD fed mice to find that this effect requires presence of microbes and aHPD at the same time. The aHPD did not change the number of regulatory T cells or Th17 cells and still worsened the colitis in immuno-deficient RAG2 knock-out mice suggesting that this effect was not dependent on adaptive immunity. The pro-inflammatory effect of aHPD was, however, abrogated when splenic macrophages were depleted with clodronate liposomes. This treatment prevented aHPD induced increase in colonic Ly-6Chigh pro-inflammatory monocytes, but the ratio of resident Ly-6C-/low macrophages was not changed. These data show that the interactions between dietary protein of animal origin and gut microbiota increase sensitivity to intestinal inflammation by promoting pro-inflammatory response of monocytes.
- Keywords
- colitis, dietary protein, germ-free, macrophage, microbiota,
- MeSH
- Adaptive Immunity immunology MeSH
- Th17 Cells immunology metabolism MeSH
- Diet adverse effects MeSH
- Dietary Proteins administration & dosage adverse effects MeSH
- DNA-Binding Proteins metabolism MeSH
- Colitis immunology metabolism pathology MeSH
- Colon immunology metabolism pathology MeSH
- Macrophages immunology metabolism pathology MeSH
- Disease Models, Animal MeSH
- Monocytes immunology metabolism pathology MeSH
- Mice, Inbred BALB C MeSH
- Mice, Knockout MeSH
- Mice MeSH
- T-Lymphocytes, Regulatory immunology metabolism MeSH
- Intestines immunology pathology MeSH
- Gastrointestinal Microbiome immunology physiology MeSH
- Inflammation immunology metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dietary Proteins MeSH
- DNA-Binding Proteins MeSH
Psoriatic patients have altered microbiota, both in the intestine and on the skin. It is not clear, however, whether this is a cause or consequence of the disease. In this study, using an experimental mouse model of psoriasis induced by imiquimod (IMQ), we show that oral treatment with a broad spectrum of antibiotics (MIX) or metronidazole (MET) alone mitigates the severity of skin inflammation through downregulation of Th17 immune response in conventional mice. Since some antibiotics, including MET, can influence immune system reactivity, we also evaluated the effect of MIX in the same model under germ-free (GF) conditions. GF mice treated with MET did not show milder signs of imiquimod-induced skin inflammation (IISI) which supports the conclusion that the therapeutic effect is mediated by changes in microbiota composition. Moreover, compared to controls, mice treated with MIX had a significantly higher abundance of the genus Lactobacillus in the intestine and on the skin. Mice treated with MET had a significantly higher abundance of the genera Bifidobacterium and Enterococcus both on the skin and in the intestine and of Parabacteroides distasonis in the intestine. Additionally, GF mice and mice monocolonized with either Lactobacillus plantarum or segmented filamentous bacteria (SFB) were more resistant to IISI than conventional mice. Interestingly, compared to GF mice, IMQ induced a higher degree of systemic Th17 activation in mice monocolonized with SFB but not with L. plantarum. The present findings provide evidence that intestinal and skin microbiota directly regulates IISI and emphasizes the importance of microbiota in the pathogenesis of psoriasis.
- Keywords
- animal model, antibiotics, germ-free, imiquimod, intestine, microbiota, psoriasis, skin,
- Publication type
- Journal Article MeSH