Viroids are small, non-coding, pathogenic RNAs with a significant ability of adaptation to several basic cellular processes in plants. TFIIIA-7ZF, a splicing variant of transcription factor IIIA, is involved in replication of nuclear-replicating viroids by DNA-dependent polymerase II. We overexpressed NbTFIIIA-7ZF from Nicotiana benthamiana in tobacco (Nicotiana tabacum) where it caused morphological and physiological deviations like plant stunting, splitting of leaf petioles, pistils or apexes, irregular branching of shoots, formation of double-blade leaves, deformation of main stems, and modification of glandular trichomes. Plant aging and senescence was dramatically delayed in transgenic lines. Factors potentially involved in viroid degradation and elimination in pollen were transiently depressed in transgenic leaves. This depressed "degradome" in young plants involved NtTudor S-like nuclease, dicers, argonoute 5, and pollen extracellular nuclease I showing expression in tobacco anthers and leaves. Analysis of the "degradome" in tobacco leaves transformed with either of two hop viroids confirmed modifications of the "degradome" and TFIIIA expression. Thus, the regulatory network connected to TFIIIA-7ZF could be involved in plant pathogenesis as well as in viroid adaptation to avoid its degradation. These results support the hypothesis on a significant impact of limited TFIIIA-7ZF on viroid elimination in pollen.
- Keywords
- Nicotiana tabacum, nucleolytic enzymes, plant aging, plant morphology changes, plant transformation, transcription factors, viroid,
- MeSH
- RNA, Small Untranslated * MeSH
- Pollen genetics MeSH
- Nicotiana genetics MeSH
- Transcription Factor TFIIIA MeSH
- Tobacco Use MeSH
- Viroids * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Small Untranslated * MeSH
- Transcription Factor TFIIIA MeSH
BACKGROUND: Hop (Humulus lupulus L.) bitter acids are valuable metabolites for the brewing industry. They are biosynthesized and accumulate in glandular trichomes of the female inflorescence (hop cone). The content of alpha bitter acids, such as humulones, in hop cones can differentiate aromatic from bitter hop cultivars. These contents are subject to genetic and environmental control but significantly correlate with the number and size of glandular trichomes (lupulin glands). RESULTS: We evaluated the expression levels of 37 genes involved in bitter acid biosynthesis and morphological and developmental differentiation of glandular trichomes to identify key regulatory factors involved in bitter acid content differences. For bitter acid biosynthesis genes, upregulation of humulone synthase genes, which are important for the biosynthesis of alpha bitter acids in lupulin glands, could explain the higher accumulation of alpha bitter acids in bitter hops. Several transcription factors, including HlETC1, HlMYB61 and HlMYB5 from the MYB family, as well as HlGLABRA2, HlCYCB2-4, HlZFP8 and HlYABBY1, were also more highly expressed in the bitter hop cultivars; therefore, these factors may be important for the higher density of lupulin glands also seen in the bitter hop cultivars. CONCLUSIONS: Gene expression analyses enabled us to investigate the differences between aromatic and bitter hops. This study confirmed that the bitter acid content in glandular trichomes (lupulin glands) is dependent on the last step of alpha bitter acid biosynthesis and glandular trichome density.
- Keywords
- Bitter acids, Differential gene expression, Glandular trichome development, Hop, Humulus lupulus, Lupulin gland,
- MeSH
- Humulus metabolism MeSH
- Transcription Factors metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Transcription Factors MeSH
Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.
- Keywords
- HLVd, Humulus lupulus, bitter acids content, differential gene expression, essential oils, hop, hop latent viroid, xanthohumol,
- Publication type
- Journal Article MeSH
Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.
- Keywords
- AFCVd and CBCVd propagation and eradication, Nicotiana tabacum, TUDOR S-nuclease, male gametophyte, recombinant AGO, small RNA, strand-specific viroid RT-qPCR, viroid degradation, viroid replication,
- MeSH
- Phenotype MeSH
- Host-Pathogen Interactions MeSH
- Nucleic Acid Conformation MeSH
- Plant Diseases virology MeSH
- Pollen virology MeSH
- Virus Replication MeSH
- RNA, Viral MeSH
- Nicotiana virology MeSH
- Viroids * MeSH
- Viral Load MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Viral MeSH
The hop plant (Humulus lupulus L.) produces several valuable secondary metabolites, such as prenylflavonoid, bitter acids, and essential oils. These compounds are biosynthesized in glandular trichomes (lupulin glands) endowed with pharmacological properties and widely implicated in the beer brewing industry. The present study is an attempt to generate exhaustive information of transcriptome dynamics and gene regulatory mechanisms involved in biosynthesis and regulation of these compounds, developmental changes including trichome development at three development stages, namely leaf, bract, and mature lupulin glands. Using high-throughput RNA-Seq technology, a total of 61.13, 50.01, and 20.18 Mb clean reads in the leaf, bract, and lupulin gland libraries, respectively, were obtained and assembled into 43,550 unigenes. The putative functions were assigned to 30,996 transcripts (71.17%) based on basic local alignment search tool similarity searches against public sequence databases, including GO, KEGG, NR, and COG families, which indicated that genes are principally involved in fundamental cellular and molecular functions, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in leaf, bract, and lupulin glands tissues of hop. The expression profile of transcript encoding enzymes of BCAA metabolism, MEP, and shikimate pathway was most up-regulated in lupulin glands compared with leaves and bracts. Similarly, the expression levels of the transcription factors and structural genes that directly encode enzymes involved in xanthohumol, bitter acids, and terpenoids biosynthesis pathway were found to be significantly enhanced in lupulin glands, suggesting that production of these metabolites increases after the leaf development. In addition, numerous genes involved in primary metabolism, lipid metabolism, photosynthesis, generation of precursor metabolites/energy, protein modification, transporter activity, and cell wall component biogenesis were differentially regulated in three developmental stages, suggesting their involvement in the dynamics of the lupulin gland development. The identification of differentially regulated trichome-related genes provided a new foundation for molecular research on trichome development and differentiation in hop. In conclusion, the reported results provide directions for future functional genomics studies for genetic engineering or molecular breeding for augmentation of secondary metabolite content in hop.
- Keywords
- Humulus lupulus, RNA sequencing, bitter acids, lupulin glands, prenylflavonoids, terpenoids, trichome,
- MeSH
- Flavonoids biosynthesis chemistry metabolism MeSH
- Gene Ontology MeSH
- Humulus chemistry metabolism MeSH
- Plant Leaves genetics metabolism MeSH
- Propiophenones chemistry metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- RNA-Seq MeSH
- Terpenes chemistry metabolism MeSH
- Transcription Factors metabolism MeSH
- Transcriptome genetics MeSH
- Trichomes genetics metabolism ultrastructure MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Flavonoids MeSH
- Propiophenones MeSH
- Plant Proteins MeSH
- Terpenes MeSH
- Transcription Factors MeSH
- xanthohumol MeSH Browser
BACKGROUND: The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. RESULTS: The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. CONCLUSIONS: Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop.
- Keywords
- Bitter acids, Flavonoids, Genetic transformation, Humulus lupulus, Secondary metabolite, Transcription factors, Transcriptome analysis,
- MeSH
- Molecular Sequence Annotation MeSH
- Gene Expression MeSH
- Plants, Genetically Modified MeSH
- Genomics * MeSH
- Humulus genetics MeSH
- Plant Proteins genetics MeSH
- Gene Expression Profiling * MeSH
- Transcription Factors genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Plant Proteins MeSH
- Transcription Factors MeSH
BACKGROUND: Hop (Humulus lupulus L.) plants are grown primarily for the brewing industry and have been used as a traditional medicinal herb for a long time. Severe hop stunt disease caused by the recently discovered Citrus bark cracking viroid (CBCVd) is one of the most devastating diseases among other viroid infections in hop. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in gene expression regulation. To identify miRNAs in hop and their response to CBCVd-infection, two small RNA (sRNA) libraries were prepared from healthy and CBCVd-infected hop plants and were investigated by high throughput sequencing. RESULTS: A total of 67 conserved and 49 novel miRNAs were identified. Among them, 36 conserved and 37 novel miRNAs were found to be differentially recovered in response to CBCVd-infection. A total of 311 potential targets was predicted for conserved and novel miRNAs based on a sequence homology search using hop transcriptome data. The majority of predicted targets significantly belonged to transcriptional factors that may regulate hop leaf, root and cone growth and development. In addition, the identified miRNAs might also play an important roles in other cellular and metabolic processes, such as signal transduction, stress response and other physiological processes, including prenylflavonoid biosynthesis pathways. Quantitative real time PCR analysis of selected targets revealed their negative correlation with their corresponding CBCVd-responsive miRNAs. CONCLUSIONS: Based on the results, we concluded that CBCVd-responsive miRNAs modulate several hormone pathways and transcriptional factors that play important roles in the regulation of metabolism, growth and development. These results provide a framework for further analysis of regulatory roles of sRNAs in plant defense mechanism including other hop infecting viroids in particular.
- Keywords
- Citrus bark cracking viroid, High-throughput sequencing, Humulus lupulus, Target expression, Viroids, microRNA,
- MeSH
- Data Curation MeSH
- Phenotype MeSH
- Humulus genetics virology MeSH
- RNA, Messenger genetics MeSH
- MicroRNAs genetics MeSH
- Plant Diseases genetics virology MeSH
- Gene Expression Regulation, Plant MeSH
- Reproducibility of Results MeSH
- RNA Interference MeSH
- RNA, Plant MeSH
- Gene Expression Profiling MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger MeSH
- MicroRNAs MeSH
- RNA, Plant MeSH
Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
- Keywords
- 5′ RNA degradome, Hop transformation, Lupulin biosynthesis, Plant promoter activation, Transcription factors, WRKY oligofamily,
- MeSH
- Humulus enzymology genetics metabolism MeSH
- Plant Leaves enzymology genetics MeSH
- Promoter Regions, Genetic genetics MeSH
- Gene Expression Regulation, Plant * MeSH
- Plant Proteins genetics metabolism MeSH
- Terpenes * MeSH
- Transcription Factors genetics metabolism MeSH
- Gene Silencing physiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- lupulon MeSH Browser
- Plant Proteins MeSH
- Terpenes * MeSH
- Transcription Factors MeSH